Advertisement

Laboratory Pulse Test of Hydraulic Fracturing on Granitic Sample Cores from Äspö HRL, Sweden

  • O. Stephansson
  • H. Semikova
  • G. Zimmermann
  • A. Zang
Technical Note
  • 289 Downloads

Introduction

An extensive hydraulic fracturing monitoring experiment in hard rock is conducted at 410 m depth in the Äspö Hard Rock Laboratory (HRL), Sweden, and details are described by Zang et al. (2017). Three different water injection schemes (continuous, progressive and pulse injection) are used to propagate fractures from a horizontal, ca 30-m-deep, 4-inch-diameter diamond-drilled borehole starting at the wall of the experimental tunnel TASN and drilled in the direction of the least horizontal stress. An extensive array of acoustic emission and micro-seismic instruments is installed in long boreholes surrounding the injection borehole. From totally six hydraulic tests with different injection schemes, fracture are generated and extended 20–40 m2into the hard fractured rock mass. Results from three water injection tests and one pulse test show that fracture breakdown pressure becomes lower and the number of fluid-induced seismic events becomes less compared to conventional...

Keywords

Hydraulic fracturing Pulse hydraulic fracturing Bi-axial testing Granitic rocks 

Notes

Acknowledgements

We acknowledge the technical assistance of O Vanecek, Industrial Safety Assessment Technique, ISATech, Prague, Czech Republic.

References

  1. Ask D (2003) Evaluation of measurement-related uncertainties in the analysis of overcoring rock stress data from Äspö HRL, Sweden: a case study. Int J Rock Mech Min Sci 40(7–8):1173–1187Google Scholar
  2. Ask D (2006) Measurement-related uncertainties in overcoring data at the Äspö HRL, Sweden. Part 2: biaxial tests of CSIRO overcore samples. Int J Rock Mech Min Sci 43(1):127–138CrossRefGoogle Scholar
  3. Jiráková H, Frydrych V, Vintera J, Krasny O, Vanecek M (2015) Results of the rock hydraulic fracturing research project. Tunel Undergr Constr Mag Czech Tunn Assoc Slovak Tunn Assoc 24(4):57–64Google Scholar
  4. Klee G, Rummel F (2002) IPR-02-02 Rock stress measurements at the Äspö HRL Hydraulic fracturing in boreholes, Tech. rep., SKB, Stockholm, SwedenGoogle Scholar
  5. Patel SM, Sondergeld CH, Rai CS (2017) Laboratory studies of hydraulic fracturing by cyclic injection. Int J Rock Mech Min Sci 95:8–15Google Scholar
  6. Zang A, Yoon JS, Stephansson O, Heidbach O (2013) Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity. Geophys J Int 195(2):1282–1287CrossRefGoogle Scholar
  7. Zang A, Stephansson O, Stenberg L, Plenkers K, Specht S, Milkereit C, Schill E, Kwiatek G, Dresen G, Zimmermann G, Dahm T, Weber M (2017) Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array. Geophys J Int 208(2):790–813CrossRefGoogle Scholar
  8. Zhuang L, Kim K, Jung S, Diaz M, Park S, Zang A, Stephansson O, Yoon JS (2016) Laboratory study on cyclic hydraulic fracturing of Pocheon granite in Korea. In: 50th US rock mechanics/geomechanics symposium, 26–29 June 2016. pp 16–163, American Rock Mechanics Association, Houston, Texas, USAGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • O. Stephansson
    • 1
  • H. Semikova
    • 2
  • G. Zimmermann
    • 3
  • A. Zang
    • 1
  1. 1.Section 2.6 Seismic Hazard and Stress FieldGFZ-German Research Centre for GeosciencesPotsdamGermany
  2. 2.ISATechPrague 7Czech Republic
  3. 3.Section 6.2 Energy SystemsGFZ-German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations