Rock Mechanics and Rock Engineering

, Volume 50, Issue 11, pp 2985–3001 | Cite as

Characterization of Hydraulic Fractures Growth During the Äspö Hard Rock Laboratory Experiment (Sweden)

  • J. A. López-CominoEmail author
  • S. Cesca
  • S. Heimann
  • F. Grigoli
  • C. Milkereit
  • T. Dahm
  • A. Zang
Original Paper


A crucial issue to characterize hydraulic fractures is the robust, accurate and automated detection and location of acoustic emissions (AE) associated with the fracture nucleation and growth process. Waveform stacking and coherence analysis techniques are here adapted using massive datasets with very high sampling (1 MHz) from a hydraulic fracturing experiment that took place 410 m below surface in the Äspö Hard Rock Laboratory (Sweden). We present the results obtained during the conventional, continuous water injection experiment Hydraulic Fracture 2. The resulting catalogue is composed of more than 4000 AEs. Frequency–magnitude distribution from AE magnitudes (MAE) reveals a high b value of 2.4. The magnitude of completeness is also estimated approximately MAE 1.1, and we observe an interval range of MAE between 0.77 and 2.79. The hydraulic fractures growth is then characterized by mapping the spatiotemporal evolution of AE hypocentres. The AE activity is spatially clustered in a prolate ellipsoid, resembling the main activated fracture volume (~105 m3), where the lengths of the principal axes (a = 10 m; b = 5 m; c = 4 m) define its size and its orientation can be estimated for a rupture plane (strike ~123°, dip ~60°). An asymmetric rupture process regarding to the fracturing borehole is clearly exhibited. AE events migrate upwards covering the depth interval between 404 and 414 m. After completing each injection and reinjection phase, the AE activity decreases and appears located in the same area of the initial fracture phase, suggesting a crack-closing effect.


Hydraulic fracturing Äspo Hard Rock Laboratory Induced seismicity Detection and location algorithms 



This work is funded by the EU H2020 SHEER project (—Grant agreement No. 640896). The in situ experiment (Nova project 54-14-1) was supported by the GFZ German Research Center for Geosciences (75%), the KIT Karlsruhe Institute of Technology (15%) and the Nova Center for University Studies, Research and Development (10%). An additional in-kind contribution of Swedish Nuclear Fuel and Waste Management Co (SKB) for using Äspö Hard Rock Laboratory as test site for geothermal research is greatly acknowledged. Francesco Grigoli is currently founded by the EU H2020 DESTRESS (Grant agreement No. 691728). The data for this paper are available by contacting A. Zang at


  1. Baisch S, Harjes HP (2003) A model for fluid-induced seismicity at the KTB, Germany. Geophys J Int 152:160–170CrossRefGoogle Scholar
  2. Becker D, Cailleau B, Dahm T, Shapiro S, Kaiser D (2010) Stress triggering and stress memory observed from acoustic emission records in a salt mine. Geophys J Int 182:933–948CrossRefGoogle Scholar
  3. Beyreuther M, Hammer C, Wassermann J, Ohrnberger M, Megies T (2012) Constructing a hidden Markov model based earthquake detector: application to induced seismicity. Geophys J Int 189(1):602–610. doi: 10.1111/j.1365-246X.2012.05361.x CrossRefGoogle Scholar
  4. Bohnhoff M, Dresen G, Ellsworth WL, Ito H (2009) Passive seismic monitoring of natural and induced earthquakes: case studies, future directions and socio-economic relevance. In: Cloetingh SAPL, Negendank J (eds) New frontiers in integrated solid earth sciences. Springer, Berlin, pp 261–285CrossRefGoogle Scholar
  5. Cesca S, Grigoli F (2015) Chapter two—full waveform seismological advances for microseismic monitoring. Adv Geophys 56:169–228CrossRefGoogle Scholar
  6. Cesca S, Grigoli F, Heimann S, Dahm T, Kriegerowski M, Sobiesiak M, Tassara C, Olcay M (2016) The Mw 8.1 2014 Iquique, Chile, seismic sequence: a tale of foreshocks and aftershocks. Geophys J Int 204(3):1766–1780CrossRefGoogle Scholar
  7. Cox SJD, Meredith PG (1993) Microcrack formation and material softening in rock measured by monitoring acoustic emissions. Int J Rock Mech Min Sci Geomech Abstr 30:11–24CrossRefGoogle Scholar
  8. Dahm T (2001) Rupture dimensions and rupture processes of fluid-induced microcracks in salt rock. J Volcanol Geotherm Res 109(1–3):149–162CrossRefGoogle Scholar
  9. Dahm T, Fischer T, Hainzl S (2008) Mechanical intrusion models and their implications for the possibility of magma-driven swarms in NW Bohemia region. Stud Geophys Geod 52(4):529–548CrossRefGoogle Scholar
  10. Dahm T, Hainzl S, Fischer T (2010) Bidirectional and unidirectional fracture growth during hydrofracturing: role of driving stress gradients. J Geophys Res 115:B12322CrossRefGoogle Scholar
  11. Davies R, Foulger GR, Bindley A, Styles P (2013) Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons. Mar Pet Geol 45:171–185CrossRefGoogle Scholar
  12. Economides MJ, Nolte KG, Ahmed U, Schlumberger D (2000) Reservoir stimulation, vol 18. Wiley, New YorkGoogle Scholar
  13. Eisenblätter J, Spies T (2000) Ein Magnitudenmass für Schallemyssionsanalyse und Mikroakustik, vol 12. Kolloquium Schallemission. Deutsche Gesellschaft f¨ur Zerstôrungsfreie Prüfung, JenaGoogle Scholar
  14. Ellsworth WL (2013) Injection-induced earthquakes. Science 341(6142):1 225 942CrossRefGoogle Scholar
  15. Fischer T, Hainzl S, Eisner L, Shapiro S, Le Calvez J (2008) Microseismic signatures of hydraulic fracture growth in sediment formations: observations and modeling. J Geophys Res 113:B02307. doi: 10.1029/2007JB005070 Google Scholar
  16. Fischer T, Hainzl S, Dahm T (2009) The creation of an asymmetric hydraulic fracture as a result of driving stress gradients. Geophys J Int 179:634–639. doi: 10.1111/j.1365246X.2009.04316.x CrossRefGoogle Scholar
  17. Geiger L (1910) Determination of seismic centres, nachrichten von der koniglicher gesellschaft der wissenschaften zu gottingen mathematisch physikalische klasse. Universitaet Gottingen, Gottingen, pp 331–349Google Scholar
  18. Goodfellow SD, Young RP (2014) A laboratory acoustic emission experiment under in situ conditions. Geophys Res Lett. doi: 10.1002/2014GL059965 Google Scholar
  19. Grigoli F, Cesca S, Vassallo M, Dahm T (2013) Automated seismic event location by traveltime stacking: an application to mining induced seismicity. Seismol Res Lett 84(4):666–677CrossRefGoogle Scholar
  20. Grigoli F, Cesca S, Amoroso O, Emolo A, Zollo A, Dahm T (2014) Automated seismic event location by waveform coherence analysis. Geophys J Int 196(3):1742–1753CrossRefGoogle Scholar
  21. Grigoli F, Cesca S, Krieger L, Kriegerowski M, Gammaldi S, Horalek J, Priolo E, Dahm T (2016) Automated microseismic event location using master-event waveform stacking. Sci Rep 6:25744. doi: 10.1038/srep25744 CrossRefGoogle Scholar
  22. Gutenberg R, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188Google Scholar
  23. Hainzl S (2016) Rate-Dependent incompleteness of earthquake catalogs. Seismol Res Lett 87(2A):337–344CrossRefGoogle Scholar
  24. Heimann S, Matos C, Cesca S, Rio I, Custódio S (2017) Lassie: a versatile tool to detect and locate seismicity, (in preparation)Google Scholar
  25. House L (1987) Locating microearthquakes induced by hydraulic fracturing in crystalline rocks. Geophys Res Lett 14(9):919–921CrossRefGoogle Scholar
  26. Kochnev VA, Goz IV, Polyakov VS, Murtayev IS, Savin VG, Zommer BK, Bryksin IV (2007) Imaging hydraulic fracture zones from surface passive microseismic data. First Break 25:77–80Google Scholar
  27. Köhler N, Spies T, Dahm T (2009) Seismicity pattern and variation of the frequency magnitude distribution of microcracks in salt. Geophys J Int 179(1):489–499. doi: 10.1111/j.1365-246X.2009.04303.x CrossRefGoogle Scholar
  28. Kwiatek G, Plenkers K, Dresen G (2011) Source parameters of picoseismicity recorded at mponeng deep gold mine, South Africa: implications for scaling relations. Bull Seismol Soc Am 101(6):2592–2608CrossRefGoogle Scholar
  29. López-Comino JA, Cesca S, Kriegerowski M, Heimann S, Dahm T, Mirek J, Lasocki S (2017a) Monitoring performance using synthetic data for induced microseismicity by hydrofracking at the Wysin site (Poland). Geophys J Int 210(1):42–55CrossRefGoogle Scholar
  30. López-Comino JA, Heimann S, Cesca S, Milkereit C, Dahm T, Zang A (2017b) Automated full waveform detection and location algorithm of acoustic emissions from hydraulic fracturing experiment. Proc Eng 191:697–702CrossRefGoogle Scholar
  31. Madariaga R (1976) Dynamics of an expanding circular fault. Bull Seismol Soc Am 66:639–666Google Scholar
  32. Maghsoudi S, Cesca S, Hainzl S, Kaiser D, Becker D, Dahm T (2013) Improving the estimation of detection probability and magnitude of completeness in strongly heterogeneous media, an application to acoustic emission (AE). Geophys J Int 193(3):1556–1569CrossRefGoogle Scholar
  33. Maghsoudi S, Hainzl S, Cesca S, Dahm T, Kaiser D (2014) Identification and characterization of growing large-scale en-echelon fractures in a salt mine. Geophys J Int 196(2):1092–1105CrossRefGoogle Scholar
  34. Manthei G, Eisenblätter J, Kamlot P (2003) Stress measurements in salt mines using a special hydraulic fracturing borehole tool. In: Natau O, Fecker E, Pimentel E (eds) Geotechnical measurement and modelling. CRC Press, Boca Raton, pp 355–360Google Scholar
  35. Matos C, Heimann S, Grigoli F, Cesca S, Custódio S (2016) Seismicity of a slow deforming environment: Alentejo, south Portugal, EGU General Assembly 2016, EGU2016-278Google Scholar
  36. McGarr A (2014) Maximum magnitude earthquakes induced by fluid injection. J Geophys Res Solid Earth 119:1008–1019. doi: 10.1002/2013JB010597 CrossRefGoogle Scholar
  37. McLaskey GC, Kilgore BD, Lockner DA, Beeler NM (2014) Laboratory generated M -6 Earthquakes. Pure appl Geophys 31:157–168. doi: 10.1007/s00024-013-0772-9 Google Scholar
  38. Niitsuma H, Nagano K, Hisamatsu K (1993) Analysis of acoustic emission from hydraulically induced tensile fracture of rock. J Acoust Emiss 11(4):S1–S18Google Scholar
  39. Philipp J, Plenkers K, Gärtner G, Teichmann L (2015) On the potential of In-Situ acoustic emission (AE) technology for the monitoring of dynamic processes in salt mines. In: Roberts L (ed) Mechanical behaviour of salt, vol VIII. CRC Press, Boca Raton, pp 89–98Google Scholar
  40. Rubinstein JL, Mahani AB (2015) Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity. Seismol Res Lett 86(4):1060–1067CrossRefGoogle Scholar
  41. Smart KJ, Ofoegbu GI, Morris AP, McGinnis RN, Ferrill DA (2014) Geomechanical modeling of hydraulic fracturing: why mechanical stratigraphy, stress state, and pre-existing structure matter. Am Assoc Pet Geol Bull 98(11):2237–2261Google Scholar
  42. Suckale J (2009) Induced seismicity in hydrocarbonfields. Adv Geophys 51:55–106. doi: 10.1016/S0065-2687(09)05107-3 CrossRefGoogle Scholar
  43. Wiemer S, Wyss M (2000) Minimum magnitude of complete reporting in earthquake catalogs: examples from alaska, the western united states, and Japan. Bull Seismol Soc Am 90:859–869CrossRefGoogle Scholar
  44. Zang A, Oye V, Jousset P, Deichmann N, Gritto R, McGarr A, Majer E, Bruhn D (2014) Analysis of induced seismicity in geothermal reservoirs—an overview. Geothermics 52:6–21CrossRefGoogle Scholar
  45. Zang A, Stephansson O, Stenberg L, Plenkers K, Milkereit C, Kwiatek G, Dresen G, Schill E, Zimmermann G, Dahm T, Weber M (2017) Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array. Geophys J Int 208(2):790–813CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.GFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.ETH Zurich, Swiss Seismological ServiceZurichSwitzerland

Personalised recommendations