Rock Mechanics and Rock Engineering

, Volume 50, Issue 2, pp 403–418 | Cite as

Analysis of a Large Rock Slope Failure on the East Wall of the LAB Chrysotile Mine in Canada: Back Analysis, Impact of Water Infilling and Mining Activity

  • Martin GrenonEmail author
  • Philippe Caudal
  • Sina Amoushahi
  • Dominique Turmel
  • Jacques Locat
Original Paper


A major mining slope failure occurred in July 2012 on the East wall of the LAB Chrysotile mine in Canada. The major consequence of this failure was the loss of the local highway (Road 112), the main commercial link between the region and the Northeast USA. LiDAR scanning and subsequent analyses were performed and enabled quantifying the geometry and kinematics of the failure area. Using this information, this paper presents the back analysis of the July 2012 failure. The analyses are performed using deterministic and probabilistic limit equilibrium analysis and finite-element shear strength reduction analysis modelling. The impact of pit water infilling on the slope stability is investigated. The impact of the mining activity in 2011 in the lower part of the slope is also investigated through a parametric analysis.


Open-pit mining Slope stability Numerical modelling Case study Deterministic and probabilistic analysis 



The authors would like to acknowledge the financial support of Transports Québec and the Natural Sciences and Engineering Research Council of Canada (NSERC). The authors would also like to thank Pierre Dorval and François Bossé (Service Géotechnique et Géologie-Transports Québec) for providing airborne LiDAR survey data, pictures and technical advice. The authors are grateful to Michel Vallée and Gilles Bonin for providing easy mine site access. Finally, the authors are also grateful to Denis Fabre and Olivier Fouché (Conservatoire national des arts et métiers) for their technical inputs.


  1. Bonin G (2013) Personal communication: plan de restauration—Opération Black Lake, Instrumentation—Stabilité des pentes. Scale 1″ = 200′. Drawn by M. N. LAB Asbestos, December 21, 2000. Sections map E1, E2, E3 et E4—Opération Black Lake—Puit Black Lake. Scale 1″ = 100′. Drawn by M. N. LAB Asbestos, January 25, 2002Google Scholar
  2. Caudal P (2013). Analyse d’un glissement actif par suivi LiDAR et modélisation de la rupture: Mine LAB Chrysotile à Black Lake, (Québec. Mémoire (diplôme ingénieur). Conservatoire national des arts et métiers, ParisGoogle Scholar
  3. Caudal P (2015) Suivi et analyse d’un glissement actif, mur Est de la mine LAB Chrysotile à Thetford Mines. Canada, M.Sc. thesis, Université LavalGoogle Scholar
  4. Caudal P, Grenon M, Turmel D, Locat J (2016) Analysis of large rock slope failure on the East wall of the LAB Chrysotile Mine in Canada—LiDAR monitoring and displacement analyses, Rock Mechanics and Rock Engineering. Submitted to RMREGoogle Scholar
  5. Cojean R, Fleurisson JA (1990) Influence de la structure géologique sur la stabilité des versants progressivement submergés par la montée d’un plan d’eau (Translation: Influence of geological structures on the stability of reservoir slopes progressively submerged by the rising water level). In: Proceedings of 6th international congress: international association of engineering geology, vol 3, Theme 4: Surface Engineering GeologyGoogle Scholar
  6. Diederichs M, Lato M, Hammah R, Quinn P (2007) Shear strength reduction approach for slope stability analyses. In: Proceedings of the 1st Canada-US rock mech symposium. Vancouver, CanadaGoogle Scholar
  7. Fleurisson JA, Cojean R (2014) Error reduction in slope stability assessment. Surface mining methods, technology and systems, vol 1Google Scholar
  8. Hammah R, Yacoub T, Corkum B, Curran J (2005) A comparison of finite element slope stability analysis with conventional limit-equilibrium investigation. In: Proceedings of the 58th Canadian geotechnical conference. Saskatoon, CanadaGoogle Scholar
  9. Hoek E, Carranza-Torres C, Corkum B (2002) Hoek-brown criterion—2002 edition. Paper presented at the proceedings NARMS-TAC conference 2002, Toronto, CanadaGoogle Scholar
  10. Rocscience Inc. (2016a) Slide v7.2D. Limit equilibrium slope stability analysis. Toronto, Canada
  11. Rocscience Inc. (2016b) RS2 v9. Finite element analysis for excavations and slopes. Toronto, Canada
  12. Woo K-S, Eberhardt E, Rabus B, Stead D, Vyazmensky A (2012) Integration of field characterisation, mine production and InSAR monitoring data to constrain and calibrate 3-D numerical modelling of block caving-induced subsidence. Int J Rock Mech Min Sci 53:166–178. doi: 10.1016/j.ijrmms.2012.05.008 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Martin Grenon
    • 1
    Email author
  • Philippe Caudal
    • 1
  • Sina Amoushahi
    • 1
  • Dominique Turmel
    • 2
  • Jacques Locat
    • 2
  1. 1.Département de Génie des Mines, de la Métallurgie et des Matériaux, Faculté des Sciences et de GénieUniversité LavalQuébecCanada
  2. 2.Département de Géologie et de Génie Géologique, Faculté des Sciences et de GénieUniversité LavalQuébecCanada

Personalised recommendations