Rock Mechanics and Rock Engineering

, Volume 50, Issue 2, pp 419–438 | Cite as

Structure, Mineralogy and Geomechanical Properties of Shear Zones of Deep-Seated Rockslides in Metamorphic Rocks (Tyrol, Austria)

  • Thomas StrauhalEmail author
  • Christian Zangerl
  • Wolfgang Fellin
  • Michael Holzmann
  • Daniela Anna Engl
  • Rainer Brandner
  • Peter Tropper
  • Richard Tessadri
Original Paper


Deep-seated rockslides, which are characterised by slow to extremely slow rates of movement, frequently occur in foliated metamorphic rock masses (schists, phyllites, paragneiss series). Many case studies indicate that slope displacement is predominantly localised at basal and internal shear zones. Thus, the deformation and stability behaviour of rockslides is influenced primarily by the properties of these soil-like shear zones. In this study, new findings concerning the structure, mineralogical composition and geomechanical characteristics (residual friction angle, grain size distribution) of the shear zones of deep-seated rockslides are presented. The characteristics of these shear zones are shown by case studies in paragneissic rock masses of the polymetamorphic Austroalpine Ötztal–Stubai crystalline complex in Tyrol, Austria. Differences between the laboratory scale and the in situ scale are discussed, as well as the evolution of the shear zones. Within the framework of this study, structural investigations of the shear zones were performed from surface and subsurface surveys and core logs, as well as mineralogical laboratory analyses, grain size analyses and ring shear tests. The shear zones are characterised by a complex fabric of lensoid-shaped layers of clayey-silty fault gouges embedded in sandy-gravelly fault breccias and block-in-matrix structures. The mineralogical analyses indicated high amounts of phyllosilicates, such as mica and chlorite. Swelling clay minerals were observed in small amounts in very few instances. The ring shear tests of the rockslide fault gouge samples, performed under various normal stress conditions, resulted in residual friction angles in a wide range between 19° and 28°, reached after rather short displacements.


Rockslide Foliated metamorphic rock mass Shear zone structure Fault gouge Shear strength Ring shear test 



The authors thank TIWAG-Tiroler Wasserkraft AG for providing samples of the Klasgarten, Hochmais–Atemkopf and Hapmes rockslides. We thank Florian Lehner for collecting and analysing samples no. G2–G4, Christoph Prager for the fruitful discussions, and Stefan Tilg for his help with the soil mechanics laboratory tests. This study is part of the alpS research projects ProMM and AdaptInfra, which are supported and funded by TIWAG, ILF Consulting Engineers, geo.zt and the Austrian Research Promotion Agency (COMET program). The alpS-K1-Centre is supported by Federal Ministries BMVIT and BMWFW and by the states of Tyrol and Vorarlberg within the framework of the Competence Centers for Excellent Technologies (COMET). COMET is processed through FFG (Österreichische Forschungsfördungsgesellschaft). The quality of the manuscript was improved by the constructive comments of the editor, Luca Bonzanigo, and an anonymous reviewer.


  1. Ambrosi C, Crosta GB (2006) Large sacking along major tectonic features in the Central Italian Alps. Eng Geol 83:183–200CrossRefGoogle Scholar
  2. ASTM D2487-11 (2011) Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM International, West Conshohocken.
  3. Bandis SC, Lumsden AC, Barton N (1983) Fundamentals of rock joint deformation. Int J Rock Mech Min 20:249–268CrossRefGoogle Scholar
  4. Barla G (2010) Progress in the understanding of deep-seated landslides from massive rock slope failure. In: ISRM international symposium—6th Asian rock mechanics symposium, October 23–27, 2010, New Delhi, India, pp 58–72Google Scholar
  5. Barla G, Antolini F, Barla M, Mensi E, Piovano G (2010) Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques. Eng Geol 116:218–235CrossRefGoogle Scholar
  6. Bonzanigo L (1999) Lo slittamento di Campo Vallemaggia. Unpubl. Ph.D. thesis, Swiss Federal Institute of Technology, ZurichGoogle Scholar
  7. Bonzanigo L, Eberhardt E, Loew S (2007) Long-term investigation of a deep-seated creeping landslide in crystalline rock. Part I. Geological and hydromechanical factors controlling the Campo Vallemaggia landslide. Can Geotech J 44:1157–1180CrossRefGoogle Scholar
  8. Bressani LA, Pinheiro RJB, Bica AVD, Eisenberger CN, Soares JMD (2008) Movements of large urban slope in the town of Santa Cruz do Sul (RGS), Brazil. In: Chen Z, Zhang J, Li Z, Wu F, Ho K (eds) Landslides and engineered slopes—from the past to the future, vol 1. CRC Press, Boca Raton, pp 293–298CrossRefGoogle Scholar
  9. Brindley GW (1952) Identification of clay minerals by X-ray diffraction analysis. Clay Clay Miner 1:119–129CrossRefGoogle Scholar
  10. Bromhead EN, Dixon N (1986) The field residual strength of London clay and its correlation with laboratory measurements, especially ring shear tests. Geotechnique 36(4):449–452CrossRefGoogle Scholar
  11. Brückl E, Parotidis M (2005) Prediction of slope instabilities due to deep-seated gravitational creep. Nat Hazards Earth Syst Sci 5:155–172CrossRefGoogle Scholar
  12. Brückl E, Brunner FK, Kraus K (2006) Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data. Eng Geol 88:149–159CrossRefGoogle Scholar
  13. Bruker AXS Inc. (1999) Bruker Advanced X-ray Solutions—DIFFRACplus, EVA, user’s manual, KarlsruheGoogle Scholar
  14. Buffington JM (1992) Friction angle measurements on a naturally formed gravel streambed: implications for critical boundary shear stress. Water Resour Res 28:411–425CrossRefGoogle Scholar
  15. Button EA (2004) A contribution to the characterization of phyllitic and schistose rock masses for tunnelling. Gruppe Geotechnik Graz 22:1–134Google Scholar
  16. Chigira M (1992) Long-term gravitational deformation of rocks by mass rock creep. Eng Geol 32:157–184CrossRefGoogle Scholar
  17. Cloos H (1928) Experimente zur inneren Tektonik. Zentralblatt für Mineralogie, Geologie und Paläontologie 12:609–621Google Scholar
  18. Craig RF (2004) Craig’s soil mechanics, 7th edn. Spon Press, London, p 447Google Scholar
  19. Crosta GB, Agliardi F (2002) How to obtain alert velocity thresholds for large rockslides. Phys Chem Earth Parts A/B/C 27(36):1557–1565CrossRefGoogle Scholar
  20. DIN 18123 (2011) Soil, investigation and testing—determination of grain-size distribution. Deutsches Institut fur Normung E.V. (German Institute for Standardization), BerlinGoogle Scholar
  21. DIN 18137-3 (2002) Baugrund, Untersuchung von Bodenproben—Bestimmung der Scherfestigkeit; Teil 3: Direkter Scherversuch. Deutsches Institut fur Normung E.V. (German Institute for Standardization), BerlinGoogle Scholar
  22. EN ISO 14688–1:2002 (2013) Geotechnical investigation and testing—identification and classification of soil—part 1: identification and description. International Organization for Standardization, ViennaGoogle Scholar
  23. Engl DA, Fellin W, Kieffer DS, Zangerl C (2010) A novel approach for assessing the deformation characteristics of a rockslide. In: Williams AL, Pinches GM, Chin CY, McMorran TJ, Massey CI (eds) Proceedings of the 11th IAEG congress. Taylor & Francis, Auckland, pp 1530–1545Google Scholar
  24. Fellin W, Berghamer S, Renk D (2009) Konfidenzgrenzen der Scherfestigkeit als Grundlage zur Festlegung charakteristischer Scherparameter. Geotechnik 32:30–36Google Scholar
  25. Folk RL, Ward WC (1957) Brazos river bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26CrossRefGoogle Scholar
  26. Fukuoka H, Sassa K, Wang G, Sasak R (2006) Observation of shear zone development in ring-shear apparatus with a transparent shear box. Landslides 3(3):239–251CrossRefGoogle Scholar
  27. Hammer W (1923) Erläuterungen zur Geologischen Spezialkarte der Republik Österreich. Blatt Nauders (5245). Geological Survey of Austria, Universitätsbuchhandlung, ViennaGoogle Scholar
  28. Hammer W (1929) Der granitische Kern der Stubaier Gruppe und seine Beziehungen zum Bau der Ötztaler Alpen. Jahrbuch der Geologischen Bundesanstalt Wien 79:87–128Google Scholar
  29. Helmstetter A, Sornette D, Grasso J-R, Andersen JV, Gluzman S, Pisarenko V (2004) Slider block friction model for landslides: application to Vaiont and La Clapière landslides. J Geophys Res 109:B02409. doi: 10.1029/2002JB002160 CrossRefGoogle Scholar
  30. Henderson IHC, Ganerød GV, Braathen A (2010) The relationship between particle characteristics and frictional strength in basal fault breccias: implications for fault-rock evolution and rockslide susceptibility. Tectonophysics 486:132–149CrossRefGoogle Scholar
  31. Hoinkes G, Thöni M, Bernhard F, Kaindl R, Lichem C, Tropper P (1994) Pre-Alpine magmatic and metamorphic evolution of the Austroalpine Ötztal basement in the Kaunertal area. Mitt Österr Mineral Ges 139:59–61Google Scholar
  32. Hungr O, Evans SG (2004) The occurrence and classification of massive rock slope failure. Felsbau 22(4):16–23Google Scholar
  33. Hutchinson JN (1969) A reconsideration of the coastal landslides at Folkestone Warren, Kent. Geotechnique 19:6–38CrossRefGoogle Scholar
  34. Kenney TC (1967) The influence of mineralogical composition on the residual strength of natural soils. In: Proceedings of geotechnical conference on shear strength of natural soils and rock, Oslo 1, pp 123–129Google Scholar
  35. Laws S, Eberhardt E, Loew S, Descoeudres F (2003) Geomechanical properties of shear zones in the Eastern Aar Massif, Switzerland and their implication on tunnelling. Rock Mech Rock Eng 36(4):271–303CrossRefGoogle Scholar
  36. Lebourg T, Hernandez M, Jomard H, El Bedoui S, Bois T, Zerathe S, Tric E, Vidal M (2011) Temporal evolution of weathered cataclastic material in gravitational faults of the La Clapiere deep-seated landslide by mechanical approach. Landslides 8:241–252CrossRefGoogle Scholar
  37. Lehner F (2013) Ingenieurgeologische Untersuchung von Massenbewegungen im Ötztal–Stubai Kristallin (Sellraintal, Tirol). Unpubl. Master Thesis, University of Innsbruck, InnsbruckGoogle Scholar
  38. Li YR, Aydin A (2010) Behavior of rounded granular materials in direct shear: mechanisms and quantification of fluctuations. Eng Geol 115:96–104CrossRefGoogle Scholar
  39. Lupini JF, Skinner AE, Vaughan PR (1981) The drained residual strength of cohesive soils. Géotechnique 31(2):181–213CrossRefGoogle Scholar
  40. Martinotti ME (2010) Creep behaviour of cataclastic rock in massive rock slopes. Unpubl. Ph.D. thesis, Politecnico di Torino, TurinGoogle Scholar
  41. Medley E (2007) Bimrocks-part 1: introduction. Newsl Hell Soc Soil Mech Geotech Eng 7:17–21 (with Errata) Google Scholar
  42. Mesri G, Huvaj-Sarihan N (2012) Residual shear strength measured by laboratory tests and mobilized in landslides. J Geotech Geoenviron 138(5):585–593CrossRefGoogle Scholar
  43. Mesri G, Shahien M (2003) Residual shear strength mobilized in first-time slope failures. J Geotech Geoenviron 129(1):12–31CrossRefGoogle Scholar
  44. Moore DM, Reynolds RC Jr (1989) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford, p 332Google Scholar
  45. Noverraz F (1996) Sagging or deep-seated creep: fiction or reality? In: 7th International symposium on landslides, Balkema, Rotterdam, pp 821–828Google Scholar
  46. ÖNORM B 4412 (1974) Erd- und Grundbau; Untersuchung von Bodenproben; Korngrößenverteilung, ViennaGoogle Scholar
  47. Passchier CW, Cees W, Trouw RAJ (2005) Microtectonics, 2nd edn. Springer, BerlinGoogle Scholar
  48. Patton FD (1966) Multiple modes of shear failure in rock. In: Proceedings to the 1st congress international society for rock mechanics, September 25–October 1, Lisbon, Portugal, pp 509–513Google Scholar
  49. Pflaumer P, Heine B, Hartung J (2005) Statistik für Wirtschafts- und Sozialwissenschaften: Deskriptive Statistik, 3rd edn. Oldenbourg Wissenschaftsverlag, Munich, p 348Google Scholar
  50. Prager C, Zangerl C, Patzelt G, Brandner R (2008) Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Nat Hazards Earth Syst Sci 8:377–407CrossRefGoogle Scholar
  51. Reiter F, Lenhardt WA, Brandner R (2005) Indications for activity of the Brenner Normal Fault zone (Tyrol, Austria) from seismological and GPS data. Austrian J Earth Sci 97:16–23Google Scholar
  52. Renk D (2011) Zur Statik der Bodenvernagelung. Advanced Geotechnical Engineering and Tunnelling 17, Logos, BerlinGoogle Scholar
  53. Sagy A, Brodsky E, Axen GJ (2007) Evolution of fault-surface roughness with slip. Geology 35:283–286CrossRefGoogle Scholar
  54. Sammis C, King G, Biegel R (1987) The kinematics of gouge deformation. Pure Appl Geophys 125:777–812CrossRefGoogle Scholar
  55. Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol Helv 97:93–117CrossRefGoogle Scholar
  56. Schmidegg O (1966) Bericht Staudamm Gepatsch, Geologie im Speicherbecken (Geologische Grundlagenfür die Hangbewegungen). Report K13–392, Unpubl. report, TIWAG, InnsbruckGoogle Scholar
  57. Schultz LG (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale, Analytical methods in geochemical investigations of the Pierre Shale. Geological survey professional paper 391-C, U.S. Government Printing Office, WashingtonGoogle Scholar
  58. Sibson RH (1977) Fault rocks and fault mechanisms. J Geol Soc 133:191–213CrossRefGoogle Scholar
  59. Skempton AW (1966) Some observations on tectonic shear zones. In: International society for rock mechanics, September 25–October 1, 1966, Lisbon, Portugal, pp 329–335Google Scholar
  60. Skempton AW (1985) Residual strength of clays in landslides, folded strata and the laboratory. Géotechnique 35(1):3–18CrossRefGoogle Scholar
  61. Skempton AW, Petley DJ (1967) The strength along structural discontinuities in stiff clays. In: Proceedings geotechnology conference on shear strength properties of natural soils and rocks, NGI, Norwegian Geotechnical Institute, Oslo, Norway, 2, pp 29–47Google Scholar
  62. Stark TD, Eid HT (1998) Performance of three-dimensional slope stability methods in practice. J Geotech Geoenviron Eng 124:1049–1060CrossRefGoogle Scholar
  63. Stark TD, Choi H, McCone S (2005) Drained shear strength parameters for analysis of landslides. J Geotech Geoenviron Eng 131(5):575–588CrossRefGoogle Scholar
  64. Storti F, Billi A, Salvini F (2003) Particle size distributions in natural carbonate fault rocks: insights for non-self-similar cataclasis. Earth Planet Sci Lett 206(1–2):173–186CrossRefGoogle Scholar
  65. Strauhal T (2009) Mineralogische und geotechnische Eigenschaften von tektonisch- und massenbewegungsbedingten Kakiriten. Unpubl. Diploma Thesis, University of Innsbruck, InnsbruckGoogle Scholar
  66. Strauhal T, Loew S, Holzmann M, Zangerl C (2016a) Detailed hydrogeological analysis of a deep-seated rockslide at the Gepatsch reservoir (Klasgarten, Austria). Hydrogeol J 24(2):349–371CrossRefGoogle Scholar
  67. Strauhal T, Prager C, Millen B, Spötl C, Zangerl C, Brandner C (2016b) Aquifer geochemistry of crystalline rocks and quaternary deposits in a high altitude alpine environment (Kauner Valley, Austria). Austrian J Earth Sci 109(1):29–44Google Scholar
  68. Tentschert E (1998) Das Langzeitverhalten der Sackungshänge im Speicher Gepatsch (Tirol, Österreich). Felsbau 16(3):194–200Google Scholar
  69. Tiwari B, Marui H (2005) A new method for the correlation of residual shear strength of the soil with mineralogical composition. J Geotech Geoenviron Eng 131(9):1139–1150CrossRefGoogle Scholar
  70. Tiwari B, Brandon TL, Marui H, Tuladhar GR (2005) Comparison of residual shear strengths from back analysis and ring shear tests on undisturbed and remolded specimens. J Geotech Geoenviron Eng 131(9):1071–1079CrossRefGoogle Scholar
  71. Tschalenko JS (1970) Similarities between shear zones of different magnitudes. Geol Soc Am Bull 81:1625–1640CrossRefGoogle Scholar
  72. Tsiambaos G (1991) Correlation of mineralogy and index properties with residual strength of Iraklion marls. Eng Geol 30:357–369CrossRefGoogle Scholar
  73. Volani MC (2012) Strukturell induzierte Massenbewegung am Freihut bei Gries im Sellrain (Sellraintal, Tirol). Unpubl. Diploma Thesis, University of Innsbruck, InnsbruckGoogle Scholar
  74. Weidinger JT, Schramm J-M, Surenian R (1996) On preparatory causal factors, initiating the prehistoric Tsergo Ri landslide (Langthang Himal, Nepal). Tectonophysics 260:95–107CrossRefGoogle Scholar
  75. Wen BP, Aydin A, Duzgoren-Aydin NS, Li YR, Chen HY, Xiao SD (2007) Residual shear strength of slip zones of large landslides in the Three Gorges area, China. Eng Geol 93:82–98CrossRefGoogle Scholar
  76. Zangerl C, Prager C (2008) Influence of geological structures on failure initiation, internal deformation and kinematics of rock slides. In: Proceeding of the 42nd U.S. rock mechanics symposium/2nd U.S.–Canada rock mechanics symposium, San Francisco, ARMA 08-063, pp 1–13Google Scholar
  77. Zangerl C, Eberhardt E, Schönlaub H, Anegg J (2007) Deformation behaviour of deep-seated rockslides in crystalline rock. In: Eberhardt E, Stead D, Morrison T (eds) Proceeding of the 1st Canada–U.S. rock mechanics symposium, Vancouver, Canada, vol 2, pp 901–908Google Scholar
  78. Zangerl C, Eberhardt E, Perzlmaier S (2010) Kinematic behaviour and velocity characteristics of a complex deep-seated crystalline rockslide system in relation to its interaction with a dam reservoir. Eng Geol 112(1–4):53–67CrossRefGoogle Scholar
  79. Zangerl C, Holzmann M, Perzlmaier S, Engl D, Strauhal T, Prager C, Steinacher R, Molterer S (2015a) Characterisation and kinematics of deep-seated rockslides in foliated metamorphic rock masses. In: Lollino G, Giordan D, Crosta G, Corominas J, Azzam R, Wasowski J, Sciarra N (eds) Engineering geology for society and territory—volume 2. Springer, Berlin, pp 571–575CrossRefGoogle Scholar
  80. Zangerl C, Holzmann M, Perzlmeier S, Strauhal T (2015b) Geomechanics and hydrogeology of deep-seated rock slides in the surroundings of large reservoirs. In: ISRM congress 2015 proceedings of international symposium on rock mechanics. ISBN: 978-1-926872-25-4Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Thomas Strauhal
    • 1
    • 2
    Email author
  • Christian Zangerl
    • 1
    • 3
  • Wolfgang Fellin
    • 4
  • Michael Holzmann
    • 5
  • Daniela Anna Engl
    • 6
  • Rainer Brandner
    • 2
  • Peter Tropper
    • 7
  • Richard Tessadri
    • 7
  1. 1.alpS – Centre for Climate Change AdaptationInnsbruckAustria
  2. 2.Institute of GeologyUniversity of InnsbruckInnsbruckAustria
  3. 3.Institute of Applied GeologyUniversity of Natural Resources and Life SciencesViennaAustria
  4. 4.Division of Geotechnical and Tunnel EngineeringUniversity of InnsbruckInnsbruckAustria
  5. 5.TIWAG-Tiroler Wasserkraft AGInnsbruckAustria
  6. 6.Geological ServiceAustrian Torrent and Avalanche ControlInnsbruckAustria
  7. 7.Institute of Mineralogy and PetrographyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations