Rock Mechanics and Rock Engineering

, Volume 49, Issue 6, pp 2353–2372 | Cite as

Application of a New Rheological Model to Rock Avalanches: An SPH Approach

  • D. ManzanalEmail author
  • V. Drempetic
  • B. Haddad
  • M. Pastor
  • M. Martin Stickle
  • P. Mira
Original Paper


Rock avalanches move large volumes of material causing a highly destructive power over large areas. In these events, it is possible to monitor the evolution of slopes but failure cannot be always prevented. For this reason, modelling of the propagation phase provides engineers with fundamental information regarding speed, track, runout and depth. From these data, it is possible to perform a better risk assessment and propose mitigation measures to reduce the potential hazard of specific area. The purpose of this paper is to present a depth integrated, SPH model, which can be used to simulate real rock avalanches and to assess the influence of the rheology on the avalanche properties. The paper compares the performance of different rheological models to reproduce the track, runout and depth of the final deposit for both, scale test and real events such as Frank and Thurwiesier rock avalanches. These sets of benchmarks provide information on the proposed model accuracy and limitations.


Rock avalanche propagation modelling Depth-integrated model SPH 

List of symbols


Depth-mobilized mass


Vertical coordinate of the reference system


Depth-averaged velocity (LT−1)


Modulus of the depth-averaged velocity (LT−1)


Velocity at surface (z = h) (LT−1)


Erosion rate (LT−1)




Density of the solid-pore fluid mixture (ML−3)


Density of the solid phase (ML−3)


Density of the fluid phase (ML−3)


Gravity force components along X1 and X2 (LT−2)


Gravity forces along X3 (LT−2)


Basal shear stress (ML−1 T−2)


Basal shear strength (ML−1 T−2)


Shear stress (ML−1 T−2)


Cohesive shear strength (ML−1 T−2)


Effective normal stress (ML−1 T−2)


Basal friction angle


Friction angle


Basal pore pressure (ML−1 T−2)


Main radius of curvature in the direction of the flow


Shear strain (ML−1 T−2)

μ, μF

Viscosity coefficient for different rheologies


Fluidity coefficient for Perzyna viscoplastic models


Voellmy coefficient



The authors gratefully acknowledge the economic support provided by the Spanish Ministry MINECO (Projects GEODYN and GEOFLOW). The authors gratefully acknowledge the support of the Geotechnical Engineering Office, Civil Engineering and Development Department of the Government of the Hong Kong SAR in the provision of the digital terrain models for the Hong Kong landslide cases. Thanks are given to Dr Manzella for the experimental data concerning the granular avalanche experiments.


  1. Alonso EE, Pinyol NM, Puzrin AM (2010) Thermo-hydro-mechanics of a rapid slide: Vaiont Landslide, Italy. In: Geomechanics of failures. Advanced topics. Springer, Netherlands, pp 167–250. isbn 978-90-481-3537-0Google Scholar
  2. Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid–structure interaction by SPH. Comput Struct 85(11):879–890CrossRefGoogle Scholar
  3. Ata R, Soulaïmani A (2005) A stabilized SPH method for inviscid shallow water flows. Int J Numer Methods Fluids 47(2):139–159CrossRefGoogle Scholar
  4. Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc R Soc A Math Phys Eng Sci 225:49–63CrossRefGoogle Scholar
  5. Benz W (1990) Smooth particle hydrodynamics: a review. In: Buchler JR (ed) The numerical modelling of nonlinear stellar pulsations, vol 302. Kluwer Academic Publishers, Berlin, pp 269–288. doi: 10.1007/978-94-009-0519-1 CrossRefGoogle Scholar
  6. Blanc T, Pastor M (2012a) A stabilized fractional step, Runge Kutta Taylor SPH algorithm for coupled problems in geomechanics. Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2012.02.006 Google Scholar
  7. Blanc T, Pastor M (2012b) A stabilized Runge Kutta, Taylor smoothed particle hydrodynamics algorithm for large deformation problems in dynamics. Int J Numer Methods Eng. doi: 10.1002/nme.4324 Google Scholar
  8. Blanc T, Pastor M (2013) A stabilized smoothed particle hydrodynamics, Taylor–Galerkin algorithm for soil dynamics problems. Int J Numer Anal Methods Geomech 37(1):1–30. doi: 10.1002/nag.1082 CrossRefGoogle Scholar
  9. Bonet J, Kulasegaram S (2000) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Methods Eng 47(6):1189–1214. doi: 10.1002/(SICI)1097-0207(20000228)47:6<1189::AID-NME830>3.0.CO;2-I CrossRefGoogle Scholar
  10. Chen CL (1988) Generalized viscoplastic modeling of debris flows. J Hydraul Eng ASCE 114(3):237–258CrossRefGoogle Scholar
  11. Coussot P (2005) Rheometry of pastes, suspensions and granular matter. Wiley, Hoboken, New Jersey. ISBN 13 978-0-471-65369-1CrossRefGoogle Scholar
  12. Cruden DM, Hungr O (1986) The debris of the Frank Slide and theories of rockslide–avalanche mobility. Can J Earth Sci 23(3):425–432CrossRefGoogle Scholar
  13. Cuomo S, Prime N, Iannone A, Dufour F, Cascini L, Darve F (2012) Large deformation FEMLIP drained analysis of a vertical cut. Acta Geotech 8(2):125–136. doi: 10.1007/s11440-012-0179-2 Google Scholar
  14. De Leffe M, Le Touzé D, Alessandrini B (2008) Coastal flow simulations using an sph formulation modelling the non-linear shallow water equations. In: Proceedings of 3rd ERCOFTAC SPHERIC workshop on SPH applications, Lausanne, Switzerland, pp 48–54Google Scholar
  15. Di Prisco C, Pisanò F (2011) An exercise on slope stability and perfect elastoplasticity. Géotechnique 61:923–934CrossRefGoogle Scholar
  16. Di Prisco C, Pastor M, Pisanò F (2012) Shear wave propagation along infinite slopes: a theoretically based numerical study. Int J Numer Anal Methods Geomech 36:619–642CrossRefGoogle Scholar
  17. Donea J, Giuliani S, Laval H, Quartapelle L (1984) Time-accurate solution of advection–diffusion problems by finite elements. Comput Methods Appl Mech Eng 45:123–145CrossRefGoogle Scholar
  18. Fritz HM, Hager WH, Minor H-W (2001) Lituya bay case: rockslide impact and wave run-up. Sci Tsunami Hazards 19(1):3–23Google Scholar
  19. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon Not R Astronom Soc 181:375–389CrossRefGoogle Scholar
  20. Gingold RA, Monaghan JJ (1982) Kernel estimates as a basis for general particle methods in hydrodynamics. J Comput Phys 46(1982):429CrossRefGoogle Scholar
  21. Gray JMNT, Wieland M, Hutter K (1999) Gravity-driven free surface flow of granular avalanches over complex basal terrain. Proc R Soc A 455:1841–1874. doi: 10.1098/rspa.1999.0383 CrossRefGoogle Scholar
  22. Heim A (1932) Bergstürze und Menschenleben, Beiblatt zur Vierteljahresschrift der Naturforschenden Gesellschaft in Zurich, vol 77, p 217 (Translated by N. Skermer under the title Landslides and Human Lives, BiTech Publishers, Vancouver, British Columbia, 1989, p 195)  Google Scholar
  23. Hungr O (1995) A model for the run-out analysis of rapid flow slides, debris flows, and avalanches. Can Geotechn J 32:610–623CrossRefGoogle Scholar
  24. Hungr O, Evans S (2004) Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Geol Soc Am Bull 116:1240–1252CrossRefGoogle Scholar
  25. Hutter K, Koch T (1991) Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions. Philos Trans R Soc Lond A 334:93–138CrossRefGoogle Scholar
  26. Hutter K, Siegel M, Savage SB, Nohguchi Y (1993) Two dimensional spreading of a granular avalanche down an inclined plane. Part 1. Theory. Acta Mech 100:37–68CrossRefGoogle Scholar
  27. Hutter K, Wang Y, Pudasaini SP (2005) The Savage–Hutter avalanche model: how far can it be pushed? Philos Trans R Soc A 363:1573–1601. doi: 10.1098/rsta.2005.1596 CrossRefGoogle Scholar
  28. Iverson RI, Denlinger RP (2001) Flow of variably fluidized granular masses across three dimensional terrain. 1. Coulomb mixture theory. J Geophys Res 106(B1):537–552CrossRefGoogle Scholar
  29. Laigle D, Coussot P (1997) Numerical modelling of mudflows. J Hydraul Eng ASCE 123(7):617–623CrossRefGoogle Scholar
  30. Li S, Liu WK (2004) Meshfree particle method. Springer Verlag, ISBN 3-540-22256-1Google Scholar
  31. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics (SPH): a meshfree particle method. World Scientific Publishing, Singapore, pp 449. ISBN 981-238-456-1CrossRefGoogle Scholar
  32. Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76CrossRefGoogle Scholar
  33. Löhner R, Morgan K, Zienkiewicz OC (1984) The solution of non-linear hyperbolic equation systems by the finite element method. Int J Numer Methods Fluids 4:1043–1063CrossRefGoogle Scholar
  34. Lucy LB (1977) Numerical approach to testing of fission hypothesis. Astron J 82(12):1013–1024CrossRefGoogle Scholar
  35. Mabssout M, Pastor M (2003) A Taylor–Galerkin algorithm for shock wave propagation and strain localization failure of viscoplastic continua. Comput Methods Appl Mech Eng 192:955–971CrossRefGoogle Scholar
  36. Mangeney A, Heinrich P, Roche R (2000) Analytical solution for testing debris avalanche numerical models. Pure Appl Geophys 157(2000):1081–1096CrossRefGoogle Scholar
  37. Mangeney-Castelnau A, Vilotte JP, Bristeau MO, Perthame B, Bouchut F, Simeoni C, Yerneni S (2003) Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme. J Geophys Res 108(B11):2527CrossRefGoogle Scholar
  38. Manzella I (2008) Dry rock avalanche propagation: unconstrained flow experiments with granular materials and small bricks. Ph. D. thesis no. 4032, Ecole Polytechnique Fédérale de Lausanne, Lausanne, SwitzerlandGoogle Scholar
  39. McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41(6):1084–1097CrossRefGoogle Scholar
  40. Melosh HJ (1979) Acoustic fluidization: a new geologic process? J Geophys Res Solid Earth (1978–2012) 84(B13):7513–7520CrossRefGoogle Scholar
  41. Monaghan JJ (1982) Why particle methods work. SIAM J Sci Stat Comput 3(4):422–433CrossRefGoogle Scholar
  42. Monaghan JJ (1985) Particle methods for hydrodynamics. Comput Phys Rep 3:71–124CrossRefGoogle Scholar
  43. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574CrossRefGoogle Scholar
  44. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406CrossRefGoogle Scholar
  45. Monaghan JJ, Kocharyan A (1995) Sph simulation of multiphase flow. Comput Phys Commun 87:225–235CrossRefGoogle Scholar
  46. Monaghan JJ, Kos A (1999) Solitary waves on a Cretan beach. J Waterw Port Coast Ocean Eng ASCE 125:145–154CrossRefGoogle Scholar
  47. Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. Astron Astrophys 149:135–143Google Scholar
  48. Monaghan JJ, Kos A, Issa N (2003) Fluid motion generated by impact. J Waterw Port Coast Ocean Eng ASCE 129:250–259CrossRefGoogle Scholar
  49. Naaim M, Vial S, Couture R, (1997) St Venant approach for rock avalanches modelling in multiple scale analyses and coupled physical systems, volume St-Venant symposium Presse de l’Ecole Nationale des Ponts et ChaussesGoogle Scholar
  50. Pastor M, Quecedo M, Fernández Merodo JA, Herreros MI, González E, Mira P (2002) Modelling tailing dams and mine waste dumps failures. Geotechnique LII(8):579–592CrossRefGoogle Scholar
  51. Pastor M, Quecedo M, González E, Herreros I, Fernández Merodo JA, Mira P (2004) A simple approximation to bottom friction for Bingham fluid depth integrated models. J Hydraul Eng ASCE 130(2):149–155CrossRefGoogle Scholar
  52. Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009a) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Methods Geomech 33:143–172Google Scholar
  53. Pastor M, Blanc T, Pastor MJ (2009b) A depth-integrated viscoplastic model for dilatant saturated cohesive-frictional fluidized mixtures: application to fast catastrophic landslides. J Non-Newton Fluid Mech 158(2009):142–153CrossRefGoogle Scholar
  54. Pastor M, Manzanal D, Fernandez Merodo JA, Mira P, Blanc T, Drempetic V, Pastor Elizade MJ, Haddad B, Sanchez M (2010) From solid to fluidized soils: diffuse failure mechanisms in geostructures with applications to fast catastrophic landslides. Granular Matter 12(3):211–228. ISSN: 1434-7636CrossRefGoogle Scholar
  55. Pastor M, Stickle MM, Dutto P, Mira P, Merodo JF, Blanc T, Benítez AS (2013). A viscoplastic approach to the behaviour of fluidized geomaterials with application to fast landslides. Contin Mech Thermodyn 1–27Google Scholar
  56. Pastor M, Blanc T, Haddad B, Drempetic V, Morles MS, Dutto P, Merodo JAF (2014) Depth averaged models for fast landslide propagation: mathematical, rheological and numerical aspects. Arch Comput Methods Eng. doi: 10.1007/s11831-014-9110-3
  57. Perzyna P (1963) The constitutive equations for rate sensitive plastic materials. Q Appl Math 20:321–332Google Scholar
  58. Pinyol NM, Alonso E (2010) Criteria for rapid sliding II.: thermo-hydro-mechanical and scale effects in Vaiont case. Eng Geol 114(3–4):211–227. doi: 10.1016/j.enggeo.2010.04.017. ISSN 0013-7952
  59. Pirulli M (2009) The Thurwieser rock avalanche (Italian Alps): description and dynamic analysis. Eng Geol 109(1–2):80–92. doi: 10.1016/j.enggeo.2008.10.007. ISSN 0013-7952Google Scholar
  60. Pisanò F, Pastor M (2011) 1D wave propagation in saturated viscous geomaterials: improvement and validation of a fractional step Taylor-Galerkin finite element algorithm. Comput Methods Appl Mech Eng 200:3341–3357CrossRefGoogle Scholar
  61. Pitman EB, Patra A, Bauer A, Nichita C, Sheridan MF, Bursik M (2003) Computing debris flows. Phys Fluids 15:3638–3646CrossRefGoogle Scholar
  62. Pudasaini SP, Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer, New York, p 602Google Scholar
  63. Quecedo M, Pastor M, Herreros MI, Fernández Merodo JA (2004) Numerical modelling of the propagation of fast landslides using the finite element method. Int J Numer Methods Eng 59:755–794. doi: 10.1002/nme.841 CrossRefGoogle Scholar
  64. Rodíguez Paz MX, Bonet J (2005) A corrected smooth particle hydrodynamics formulation of the shallow-water equations. Comput Struct 83:1396–1410CrossRefGoogle Scholar
  65. Rozman J, Rožič A, Budkovič A, Budkovič T (2004) Rockfall in the southern wall of Punta Thurwieser (Italy) on September 18th, 2004. Geologija 47(2):221–232. doi: 10.5474/geologija.2004.017 CrossRefGoogle Scholar
  66. Saint-Venant A (1871) Theorie du mouvement non permanent des eaux, avec application aux crues des rivieres et a l’introduction de marees dans leurs lits. Comptes rendus des seances de l’Academie des SciencesGoogle Scholar
  67. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215CrossRefGoogle Scholar
  68. Savage SB, Hutter K (1991) The dynamics of avalanches of granular materials from initiation to runout. Part I: analysis. Acta Mech 86:201–223CrossRefGoogle Scholar
  69. Sosio R, Crosta G (2007) Thurwieser rock avalanche. In: The information package, Geotechnical Engineering Office, Civil Engineering and Development Department, The Government of the Hong Kong Special Administrative RegionGoogle Scholar
  70. Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100(1–2):11–26CrossRefGoogle Scholar
  71. Takeda H, Miyama SM, Sekiya M (1994) Numerical-simulation of viscous-flow by smoothed particle hydrodynamics. Prog Theor Phys 92(5):939–960CrossRefGoogle Scholar
  72. Uriel Romero S, Molina R (1977) Kinematic aspects of Vaiont slide. In: Proceedings of the 3rd international conference of the ISRMR, Denver, 2B, pp 865–870Google Scholar
  73. Vacondio R, Rogers BD, Stansby PK, Mignosa P (2011) SPH modeling of shallow flow with open boundaries for practical flood simulation. J Hydraul Eng 138(6):530–541CrossRefGoogle Scholar
  74. Veveakis E, Vardoulakis I, Di Toro G (2007) Thermoporomechanics of creeping landslides: the 1963 Vaiont slide, northern Italy. J Geophys Res Earth Surf 112(F3):2156–2202CrossRefGoogle Scholar
  75. Vila JP (1999) On particle weighted methods and Smooth Particle Hydrodynamics. Mathematical models and Methods in Applied Sciences 9(2):161–209CrossRefGoogle Scholar
  76. Voellmy A (1955) Über die Zerstörungskraft von LawinenGoogle Scholar
  77. Xia X, Liang Q, Pastor M, Zou W, Zhuang YF (2013) Balancing the source terms in a SPH model for solving the shallow water equations. Adv Water Resour 59(2013):25–38CrossRefGoogle Scholar
  78. Zhu Y, Fox PJ, Morris JF (1997) Smoothed particle hydrodynamics model for flow through porous media. Comput Methods Adv Geomech 2:1041–1046Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.ETS Ingenieros de CaminosUniversidad Politécnica de MadridMadridSpain
  2. 2.Universidad de Castilla La ManchaToledoSpain
  3. 3.Centro de Estudios y Experimentación de Obras Públicas (CEDEX)MadridSpain
  4. 4.INTECIN-UBA-UNPSJBCONICETBuenos AiresArgentina

Personalised recommendations