Rock Mechanics and Rock Engineering

, Volume 49, Issue 6, pp 2317–2332

Internal Progressive Failure in Deep-Seated Landslides

  • Alba Yerro
  • Núria M. Pinyol
  • Eduardo E. Alonso
Original Paper

Abstract

Except for simple sliding motions, the stability of a slope does not depend only on the resistance of the basal failure surface. It is affected by the internal distortion of the moving mass, which plays an important role on the stability and post-failure behaviour of a landslide. The paper examines the stability conditions and the post-failure behaviour of a compound landslide whose geometry is inspired by one of the representative cross-sections of Vajont landslide. The brittleness of the mobilized rock mass was described by a strain-softening Mohr–Coulomb model, whose parameters were derived from previous contributions. The analysis was performed by means of a MPM computer code, which is capable of modelling the whole instability procedure in a unified calculation. The gravity action has been applied to initialize the stress state. This step mobilizes part of the strength along a shearing band located just above the kink of the basal surface, leading to the formation a kinematically admissible mechanism. The overall instability is triggered by an increase of water level. The increase of pore water pressures reduces the effective stresses within the slope and it leads to a progressive failure mechanism developing along an internal shearing band which controls the stability of the compound slope. The effect of the basal shearing resistance has been analysed during the post-failure stage. If no shearing strength is considered (as predicted by a thermal pressurization analysis), the model predicts a response similar to actual observations, namely a maximum sliding velocity of 25 m/s and a run-out close to 500 m.

Keywords

Landslide Progressive failure Brittleness Vajont Run-out Sliding velocity Material point method Internally sheared compound slide 

References

  1. Abbo A, Sloan S (1995) A smooth hyperbolic approximation to the Mohr–Coulomb yield criterion. Comput Struct 54(3):427–441CrossRefGoogle Scholar
  2. Abe K, Soga K, Bandara S (2013) Material point method for coupled hydromechanical problems. J Geotech Geoenviron Eng 140(3):1–16Google Scholar
  3. Al-Kafaji IKJ (2013) Formulation of a dynamic material point method (MPM) for geomechanical problems. PhD Thesis, Universität StuttgartGoogle Scholar
  4. Alonso EE, Pinyol NM, Puzrin AM (2010) Geomechanics of failures. Advanced topics. Springer, Berlin. ISBN 978-90-481-3537-0CrossRefGoogle Scholar
  5. Alonso EE, Zervos A, Pinyol NM (2015) Thermo-poro-mechanical analysis of landslides: from creeping behaviour to catastrophic failure. Géotechnique. doi:10.1680/jgeot.15-LM-006
  6. Bandara S, Soga K (2015) Coupling of soil deformation and pore fluid flow using material point method. Comput Geotech 63(1):199–214CrossRefGoogle Scholar
  7. Bardenhagen SG, Guilkey JE, Roessig KM, Brackbill JU, Witzel WM (2001) An improved contact algorithm for the material point method and application to stress propagation in granular material. Comput Model Eng Sci 2(4):509–522Google Scholar
  8. Belloni LG, Stefani R (1987) The Vajont slide: instrumentation—past experience and the modern approach. Eng Geol 24:445–474CrossRefGoogle Scholar
  9. Bishop A (1971) The influence of progressive failure on the choice of the method of stability analysis. Geotechnique 21:168–172CrossRefGoogle Scholar
  10. Cecinato F, Zervos A (2012) Influence of thermomechanics in the catastrophic collapse of planar landslides. Can Geotech J 49(2):207–225. doi:10.1139/t11-095 CrossRefGoogle Scholar
  11. Cecinato F, Zervos A, Veveakis E (2011) A thermo-mechanical model for the catastrophic collapse of large landslides. Int J Numer Anal Meth Geomech 35:1507–1535. doi:10.1002/nag.963 CrossRefGoogle Scholar
  12. Cooper M (1996) The progressive development of a failure slip surface in over-consolidated clay at Selborne, UK. In: Senneset K (eds) Proceedings of 7th international symposium on landslides 2:683–688, Trondheim, Norway. Rotterdam: Balkema, RotterdamGoogle Scholar
  13. Crosta G, Imposimato S, Roddeman D (2015) Landslide spreading, impulse water waves and modelling of the Vajont rockslide. Rock Mech Rock Eng. doi:10.1007/s00603-015-0769-z Google Scholar
  14. Del Ventisette C, Gigli G, Bonini M, Corti G, Montanari D, Santoro S, Sani F, Fanti R, Casagli N (2015) Insights from analogue modelling into the deformation mechanism of the landslide. Geomorphology 228:52–59. doi:10.1016/j.geomorph.2014.08.024 CrossRefGoogle Scholar
  15. Di Toro G, Hirose T, Nielsen S, Pennacchioni G, Shimamoto T (2006) Natural and experimental evidence of melt lubrication of faults during earthquakes. Science 311:647–649CrossRefGoogle Scholar
  16. Ferri F, Di Toro G, Hirose T, Shimamoto T (2010) Evidence of thermal pressurization in high-velocity friction experiments on smectite-rich gouges. Terra Nova 22(5):347–353CrossRefGoogle Scholar
  17. Glastonbury J, Fell R (2008a) A decision analysis framework for the assessment of likely post-failure velocity of translational and compound natural rock slope landslides. Can Geotech J 45(3):329–350. doi:10.1139/T07-082 CrossRefGoogle Scholar
  18. Glastonbury J, Fell R (2008b) Geotechnical characteristics of large slow, very slow, and extremely slow landslides. Can Geotech J 45(7):984–1005. doi:10.1139/T08-021 CrossRefGoogle Scholar
  19. Goren L, Aharonov E (2009) On the stability of landslides: a thermo-poro-elastic approach. Earth Planet Sci Lett 277(3–4):365–372CrossRefGoogle Scholar
  20. Han R, Hirose T (2012) Clay-clast aggregates in fault gouge: an unequivocal indicator of seismic faulting at shallow depths? J Struct Geol 43:92–99CrossRefGoogle Scholar
  21. Hendron AJ, Patton FD (1985) The Vajont slide, a geotechnical analysis based on new geologic observations of the failure surface. Technical Report GL-85-5, Washington DCGoogle Scholar
  22. Hendron AJ, Patton FD (1987) The slide. A geotechnical analysis based on new geologic observations of the failure surface. Eng Geol 24:475–491CrossRefGoogle Scholar
  23. Hoek E (2007) Practical rock engineering. http://www.rocscience.com/hoek/PracticalRockEngineering.asp
  24. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(April):167–194CrossRefGoogle Scholar
  25. Hutchinson JN (1987) Mechanisms producing large displacements in landslides on pre-existing shears. Mem Geol Soc China 9:175–200Google Scholar
  26. Hutchinson JN (1994) Some aspects of the morphological parameters of landslides, with example drawn from Italy and elsewhere. Geol Romana 30:1–12Google Scholar
  27. Jassim I, Stolle D, Vermeer P (2013) Two-phase dynamic analysis by material point method. Int J Numer Anal Meth Geomech 37(15):2502–2522. doi:10.1002/nag CrossRefGoogle Scholar
  28. Kenney TC (1967) Stability of the Vajont valley, discussion of a paper by L. Müller (1964) on the rock slide in the Vajont valley. Rock Mech Eng Geol 5:10–16Google Scholar
  29. Liao CJ, Lee DH, Wu JH, Lai CZ (2011) A new ring-shear device for testing rocks under high normal stress and dynamic conditions. Eng Geol 122(1–2):93–105CrossRefGoogle Scholar
  30. Mackenzie-Helnwein P, Arduino P, Shin W, Moore JA, Miller GR (2010) Modeling strategies for multiphase drag interactions using the material point method. Int J Numer Meth Eng 83(3):295–322Google Scholar
  31. Mencl V (1966) Mechanics on landslides with non-circular slip surfaces with special reference to the Slide. Géotechnique 19(4):329–337CrossRefGoogle Scholar
  32. Mizoguchi K, Hirose T, Shimamoto T, Fukuyama E (2007) Reconstruction of seismic faulting by high-velocity friction experiments: an example of the 1995 Kobe earthquake. Geophys Res Lett 34:2–4CrossRefGoogle Scholar
  33. Müller L (1964) The rock slide in the Vajont Valley. Rock Mech Eng Geol 2:148–212Google Scholar
  34. Nonveiller E (1987) The Vajont reservoir slope failure. Eng Geol 24:493–512CrossRefGoogle Scholar
  35. Pinyol NM, Alonso EE (2010a) Criteria for rapid sliding II. Eng Geol 114(3–4):211–227CrossRefGoogle Scholar
  36. Pinyol NM, Alonso EE (2010b) Fast planar slides. A closed-form thermo-hydro-mechanical solution. Int J Numer Anal Meth Geomech 34:27–52Google Scholar
  37. Potts D, Gens A (1985) A critical assessment of methods of correcting for drift from the yield surface in elasto-plastic finite element analysis. Numer Anal Methods Geomech 9(2):149–159CrossRefGoogle Scholar
  38. Rice JR (2006) Heating and weakening of faults during earthquake slip. J Geophys Res 111:B05311. doi:10.1029/2005JB004006 CrossRefGoogle Scholar
  39. Rossi D, Semenza E (1965) Carte geologiche del versante settentrionale del M. Toc e zone limitrofe, prima e dopo il fenomeno di scivolamento del 9 ottobre 1966, Scala 1:5000. Istituto di geologia dell'Università di FerraraGoogle Scholar
  40. Rots JG, Nauta P, Kuster GMA, Blaauwendraad J (1985) Smeared crack approach and fracture localization in concrete. Heron 30(1):1–48Google Scholar
  41. Semenza E (2001) La Storia del Vajont raccontata dal geologo che ha scoperto la frana. Tecomproject Editore Multimediale, FerraraGoogle Scholar
  42. Skempton AW (1964) Fourth rankine lecture: long-term stability of clay slopes. Géotechnique 14(2):77–102CrossRefGoogle Scholar
  43. Skempton AW (1966) Bedding-plane slip, residual strength and the landslide. Corresp Géotech 16(2):82–84CrossRefGoogle Scholar
  44. Soga K, Alonso E, Yerro A, Kumar K, Bandara S (2015) Trends in large deformation analysis of landslide mass movement. Géotechnique. doi:10.1680/geot./15-LM-005
  45. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1–2):179–196. doi:10.1016/0045-7825(94)90112-0 CrossRefGoogle Scholar
  46. Sulsky D, Zhou S-J, Schreyer HL (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87(1–2):236–252. doi:10.1016/0010-4655(94)00170-7 CrossRefGoogle Scholar
  47. Superchi L (2012) The Vajont rockslide: new techniques and traditional methods to re-evaluate the catastrophic event. PhD Thesis, Padova UniversityGoogle Scholar
  48. Tika TE, Hutchinson JN (1999) Ring shear tests on soil from the slide slip surface. Géotechnique 49(1):59–74CrossRefGoogle Scholar
  49. Uriel Romero S, Molina R (1977) Kinematic aspects of slide. In: N A of Sciences (ed), Proceedings of the 3th international conference of the ISRMR 2B:865–870. Denver, USAGoogle Scholar
  50. Vardoulakis I (2002) Dynamic thermo-poro-mechanical analysis of catastrophic landslides. Géotechnique 52(3):157–171CrossRefGoogle Scholar
  51. Veveakis E, Vardoulakis I, Di Toro G (2007) Thermoporomechanics of creeping landslides: the 1963 slide, northern Italy. J Geophys Res 112(F3):F03026CrossRefGoogle Scholar
  52. Voight B, Faust C (1982) Frictional heat and strength loss in same rapid slides. Géotechnique 32(1):43–54CrossRefGoogle Scholar
  53. Yang CM, Yu WL, Dong JJ, Kuo CY, Shimamoto Lee CT, Togo T, Miyamoto Y (2014) Initiation, movement, and run-out of the giant Tsaoling landslide—what can we learn from a simple rigid block model and a velocity–displacement dependent friction law? Eng Geol 182 Part B:158–181CrossRefGoogle Scholar
  54. Yerro A, Alonso E, Pinyol N (2014) Modelling progressive failure with MPM. In: Hicks, Brinkgreve, Rohe (eds) Numerical methods in geotechnical engineering. Taylor & Francis Group, Florence, pp 319–323CrossRefGoogle Scholar
  55. Yerro A, Alonso E, Pinyol N (2015) The material point method for unsaturated soils. Geotechnique 65(3):201–217. doi:10.1680/geot.14.P.163 CrossRefGoogle Scholar
  56. Zabala F, Alonso EE (2011) Progressive failure of Aznalcóllar dam using the material point method. Geotechnique 61(9):795–808. doi:10.1680/geot.9.P.134 CrossRefGoogle Scholar
  57. Zhang HW, Wang KP, Chen Z (2009) Material point method for dynamic analysis of saturated porous media under external contact/impact of solid bodies. Comput Methods Appl Mech Eng 198(17–20):1456–1472. doi:10.1016/j.cma.2008.12.006 CrossRefGoogle Scholar
  58. Zhao T, Utili S, Crosta G (2015) Rockslide and Impulse Wave Modelling in the Vajont Reservoir by DEM-CFD Analyses. Rock Mech Rock Eng. doi:10.1007/s00603-015-0731-0 Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Alba Yerro
    • 1
  • Núria M. Pinyol
    • 2
  • Eduardo E. Alonso
    • 3
  1. 1.Department of Geotechnical Engineering and GeosciencesUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Centre Internacional de Mètodes Numerics en Enginyeria, Department of Geotechnical Engineering and GeosciencesUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Department of Geotechnical Engineering and GeosciencesUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations