Advertisement

Rock Mechanics and Rock Engineering

, Volume 49, Issue 4, pp 1533–1549 | Cite as

Swelling of Clay-Sulfate Rocks: A Review of Processes and Controls

  • Christoph Butscher
  • Thomas Mutschler
  • Philipp Blum
Original Paper

Abstract

The swelling of clay-sulfate rocks is a major threat in tunnel engineering, causing serious damage to tunnels and producing high additional costs during tunnel construction and operation. The swelling problem is also known from other geotechnical fields, such as road and bridge construction, and in conjunction with geothermal drillings. The planning of counter measures that would stop or minimize the swelling is extremely difficult, and it is currently impossible to predict the swelling behavior of an actual geotechnical project. One of the reasons is our limited knowledge of the processes involved in the swelling of clay-sulfate rocks, and of the geological, mineralogical, chemical, hydraulic and mechanical controls of the swelling. This article presents a literature review of processes in swelling clay-sulfate rocks and associated controls. Numerical models that aim at simulating the processes and controls are also included in this review, and some of the remaining open questions are pointed out. By focusing on process-related work in this review, the article intends to stimulate further research across disciplines in the field of swelling clay-sulfate rocks to finally get a step further in managing the swelling problem in geotechnical projects.

Keywords

Swelling Clay-sulfate rocks Anhydrite Tunneling Review 

Notes

Acknowledgments

The first author wishes to thank Peter Huggenberger from the University of Basel and Herbert H. Einstein from MIT for long-standing collaboration and fruitful scientific discussion in the field of swelling clay-sulfate rocks.

References

  1. Alonso EE (2011) Crystal growth and geotechnics. Paper presented at the Arrigo Croce Lecture, Rome, Italy, 15 Dec 2011, pp 46Google Scholar
  2. Alonso EE, Olivella S (2008) Modelling tunnel performance in expansive gypsum claystone. In: 12th International conference on computer methods and advances in geomechanics, Goa 2008, pp 891–910Google Scholar
  3. Alonso EE, Ramon A (2013) Heave of a railway bridge induced by gypsum crystal growth: field observations. Geotechnique 63(9):707–719CrossRefGoogle Scholar
  4. Alonso EE, Berdugo IR, Ramon A (2013) Extreme expansive phenomena in anhydritic-gypsiferous claystone: the case of Lilla tunnel. Geotechnique 63:584–612CrossRefGoogle Scholar
  5. Amann F, Kaiser PK, Steiner W (2010) Triggering swelling potential of anhydrite clay rocks by brittle failure processes. In: European rock mechanics symposium EUROCK 2010, Lausanne, pp 339–342Google Scholar
  6. Amann F, Ündül O, Kaiser PK (2014) Crack initiation and crack propagation in heterogeneous sulfate-rich clay rocks. Rock Mech Rock Eng 47(5):1849–1865CrossRefGoogle Scholar
  7. Amstad C, Kovári K (2001) Untertagebau in quellfähigem Fels (Underground construction in swelling rock). Final report research assignment 52/94 of the Swiss Federal Roads OfficeGoogle Scholar
  8. Anagnostou G (1992) Untersuchungen zur Statik des Tunnelbaus in quellfähigem Gebirge (Investigations of tunnel statics in swelling rock). PhD thesis, ETH ZurichGoogle Scholar
  9. Anagnostou G (1993) A model for swelling rock in tunnelling. Rock Mech Rock Eng 26:307–331CrossRefGoogle Scholar
  10. Anagnostou G (1995) Seepage flow around tunnels in swelling rock. Int J Numer Anal Meth Geomech 19(10):705–724CrossRefGoogle Scholar
  11. Anagnostou G, Pimentel E, Serafeimidis K (2010) Swelling of sulphatic claystones: some fundamental questions and their practical relevance. Geomech Tunn 3(5):567–572CrossRefGoogle Scholar
  12. Anagnostou G, Serafeimidis K, Vrakas A (2015) On the occurrence of anhydrite in the sulphatic claystones of the Gypsum Keuper. Rock Mech Rock Eng 48:1–13CrossRefGoogle Scholar
  13. Azam S (2007) Study on the geological and engineering aspects of anhydrite/gypsum transition in the Arabian Gulf coastal deposits. Bull Eng Geol Environ 66(2):177–185CrossRefGoogle Scholar
  14. Bacharach W (2007) Tunnel sections in anhydride bearing Gypsum Keuper, planned support principles for the tunnels of the project Stuttgart 21. Geotechnik 30(4):231–239Google Scholar
  15. Barla M (2008) Numerical simulation of the swelling behaviour around tunnels based on special triaxial tests. Tunn Undergr Space Technol 23(5):508–521CrossRefGoogle Scholar
  16. Bellwald P, Einstein HH (1987) Elasto-plastic constitutive model. In: ISRM 6th international congress on rock mechanics, Montreal, Canada, 30 Aug–10 Sept 1987. Balkema, pp 1489–1492Google Scholar
  17. Benz T, Wehnert M (2010) Schadensfall Staufen. Berechnungen der zeitlichen Entwicklung der Hebungsprozesse (Case of Staufen. Calculations of temporal development of the heave processes). Unpublished reportGoogle Scholar
  18. Benz T, Wehnert M (2012) Schadensfall Staufen im Breisgau. Zweiter Bericht zu den Berechnungen der zeitlichen Entwicklung der Hebungsprozesse (Case of Staufen. Second report on calculations of the temporal development of the heave processes). Unpublished reportGoogle Scholar
  19. Berdugo IR, Alonso EE, Romero E, Gens A (2009a) Tunnelling and swelling in Triassic sulphate-bearing rocks. Part I: case studies from Baden-Württemberg. Revista Epsilon 12:1–17Google Scholar
  20. Berdugo IR, Alonso EE, Romero E, Gens A (2009b) Tunnelling and swelling in Triassic sulphate-bearing rocks. Part II – Case studies from Jura Mountains. Revis Epsil 12:18–30Google Scholar
  21. Blount CW, Dickson FW (1973) Gypsum–anhydrite equilibria in systems CaSO4–H2O and CaCO4–NaCl–H2O. Am Mineral 58(3–4):323–331Google Scholar
  22. Bons PD, Jessell MW (1997) Experimental simulation of the formation of fibrous veins by localised dissolution-precipitation creep. Mineral Mag 61(1):53–63CrossRefGoogle Scholar
  23. Butscher C, Einstein HH, Huggenberger P (2011a) Effects of tunneling on groundwater flow and swelling of clay-sulfate rocks. Water Resour Res 47:W11520Google Scholar
  24. Butscher C, Huggenberger P, Zechner E (2011b) Impact of tunneling on regional groundwater flow and implications for swelling of clay-sulfate rocks. Eng Geol 117(3–4):198–206CrossRefGoogle Scholar
  25. Butscher C, Huggenberger P, Zechner E, Einstein HH (2011c) Relation between hydrogeological setting and swelling potential of clay-sulfate rocks in tunneling. Eng Geol 122(3–4):204–214CrossRefGoogle Scholar
  26. Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24(11):1025–1028CrossRefGoogle Scholar
  27. Chevalier G, Diamond L, Leu W (2010) Potential for deep geological sequestration of CO2 in Switzerland: a first appraisal. Swiss J Geosci 103(3):427–455CrossRefGoogle Scholar
  28. Correns CW (1949) Growth and dissolution of crystals under linear pressure. Discuss Faraday Soc 5:267–271CrossRefGoogle Scholar
  29. Corti HR, Fernandez-Prini R (1984) Thermodynamics of solution of gypsum and anhydrite in water over a wide temperature range. Can J Chem 62:484–488CrossRefGoogle Scholar
  30. DIN EN 196-6 (1990) Prüfverfahren für Zement, Bestimmung der Mahlfeinheit (Methods of testing cement, determination of fineness). Deutsches Institut für Normung e. V., Beuth, BerlinGoogle Scholar
  31. Einstein HH (1996) Tunnelling in difficult ground: swelling behaviour and identification of swelling rocks. Rock Mech Rock Eng 29(3):113–124CrossRefGoogle Scholar
  32. Fabbri S, Madonna C, Zappone A (2013) Permeability and seismic velocities in CO2 carbonates reservoir: the laboratory insight. International Workshop on Geomechanics and Energy: The Ground as Energy Source and StorageGoogle Scholar
  33. Fecker E (1995) Untersuchungen von Schwellvorgängen und Erprobung von Auskleidungskonzepten beim Freudensteintunnel (Investigations of swelling processes and test of design concepts at the Freudenstein tunnel). Taschenbuch für den Tunnelbau 1996Google Scholar
  34. Flatt RJ, Scherer GW (2008) Thermodynamics of crystallization stresses in DEF. Cem Concr Res 38:325–336CrossRefGoogle Scholar
  35. Flückiger A (1994) Anhydritquellung. International meeting for young researchers in applied geology, Lausanne, Switzerland, pp 103–107Google Scholar
  36. Flückiger A, Nüesch R, Madsen FT (1994) Anhydritquellung. In: Kohler EE (ed) Jahrestagung DGGT, Regensburg, Germany, 13–14 September 1994. Berichte der Deutschen Ton- und Tonmineralgruppe. Deutsche Ton- und Tonmineralgruppe DTTG, pp 146–153Google Scholar
  37. Goldscheider N, Bechtel TD (2009) Editors’ message: the housing crisis from underground-damage to a historic town by geothermal drillings through anhydrite, Staufen, Germany. Hydrogeol J 17(3):491–493CrossRefGoogle Scholar
  38. Grimm M, Stober I, Kohl T, Blum P (2014) Schadensfallanalyse von Erdwärmesondenbohrungen in Baden-Württemberg (Damage event analysis of drilling borehole heat exchangers in Baden-Württemberg, Germany). Grundwasser 19:275–286CrossRefGoogle Scholar
  39. Grob H (1972) Schwelldruck im Belchentunnel (Swelling pressure in the Belchen tunnel). In: International symposium for tunneling, Luzern, Switzerland, 11–14 September 1992, pp 99–119Google Scholar
  40. Hardie LA (1967) The gypsum-anhydrite equilibrium at one atmosphere pressure. Am Mineral 52:171–200Google Scholar
  41. Hauber L, Jordan P, Madsen FT, Nüesch R, Vögtli B (2005) Tonminerale und Sulfate als Ursache für druckhaftes Verhalten von Gesteinen: Ursachen und Wirkungen des Quellvorganges (Clay minerals and sulfates as cause of rock swelling: causes and effects of the swelling process). Geologisch-palaeontologisches Institut der Universität Basel, SwitzerlandGoogle Scholar
  42. Heidkamp H, Katz C (2002) Soils with swelling potential: proposal of a final state formulation within an implicit integration scheme and illustrative FE-calculations. In: Mang HA, Rammerstorfer FG, Eberhardsteiner J (eds) 5th World Congress on Computational Mechanics. Austria, ViennaGoogle Scholar
  43. Heidkamp H, Katz C (2004) The swelling phenomenon of soils: Proposal of an efficient continuum modelling approach. In: Schubert W (ed) EUROCK 2004 & 53rd Geomechanics Colloquium, Salzburg, Austria, October 6th–8th 2004, VGEGoogle Scholar
  44. Henke KF, Kaiser W (1975) Zusammenfassung und Deutung der Ergebnisse in Bezug auf Sohlhebungen beim Tunnelbau im Gipskeuper (Summary and interpretation of results with respect to floor heaves in tunneling in the Gipskeuper formation). In: Henke KF, Krause H, Müller L, Kirchmayer M, Einfalt HC, Lippmann F (eds) Sohlhebungen beim Tunnelbau im Gipskeuper (Floor heaves in tunneling in the Gipskeuper formation). Ministerium für Wirtschaft, Mittelstand und Verkehr Baden-Württemberg, Stuttgart, pp 185–195Google Scholar
  45. Henke KF, Kaiser W, Nagel D (1975) Geomechanische Untersuchungen im Gipskeuper (Geomechanical investigations in the Gipskeuper formation). In: Henke KF, Krause H, Müller L, Kirchmayer M, Einfalt HC, Lippmann F (eds) Sohlhebungen beim Tunnelbau im Gipskeuper (Floor heaves in tunneling in the Gipskeuper formation). Ministerium für Wirtschaft, Mittelstand und Verkehr Baden-Württemberg, Stuttgart, pp 149–184Google Scholar
  46. Hill AE (1937) The transition temperature of gypsum to anhydrite. J Am Chem Soc 59(11):2242–2244CrossRefGoogle Scholar
  47. Huder J, Amberg G (1970) Quellung in Mergel, Opalinuston und Anhydrit (Swelling in marl, Opalinus clay and anhydrite). Schweizer Bauzeitung 88(43):975–980Google Scholar
  48. Innorta G, Rabbi E, Tomadin L (1980) The gypsum-anhydrite equilibrium by solubility measurements. Geochim Cosmochim Acta 44(12):1931–1936CrossRefGoogle Scholar
  49. IPCC (2005) Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change. Cambridge University Press, New York 440 pp Google Scholar
  50. ISRM (1999) Suggested methods for laboratory testing of swelling rocks. Int J Rock Mech Min Sci 36(3):291–306CrossRefGoogle Scholar
  51. Jeschke AA, Dreybrodt W (2002) Pitfalls in the determination of empirical dissolution rate equations of minerals from experimental data and a way out: an iterative procedure to find valid rate equations, applied to Ca-carbonates and –sulphates. Chem Geol 192(3–4):183–194CrossRefGoogle Scholar
  52. Jeschke AA, Vosbeck K, Dreybrodt W (2001) Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics. Geochim Cosmochim Acta 65(1):27–34CrossRefGoogle Scholar
  53. Kahr G, Krähenbühl F, Müller-Vonmoos M (1985) Ionendiffusion in hochverdichtetem Bentonit (Ion diffusion in highly compacted bentonite). Nagra Technical Report 85–23Google Scholar
  54. Kirschke D (1995) Neue Versuchstechniken und Erkenntnisse zum Anhydritschwellen (New experimental techniques and insights in anhydrite swelling). Taschenbuch für den Tunnelbau 1996, Verlag Glückauf, 203–225Google Scholar
  55. Kleinert K, Einsele G (1978) Sohlhebungen in Straßeneinschnitten im anhydrit-führenden Gipskeuper (Trias, SW Deutschland) (Floor heaves in road cuts in anhydrite-bearing Gipskeuper (Triassic, SW Germany). Berichte 3. Nationale Tagung über Felsmechanik, Aachen 1978:103–124Google Scholar
  56. Kovári K, Chiaverio F (2007) Modular yielding support for tunnels in heavily swelling rock. In: Proceedings STUVA conference 07, Cologne, Germany, 26–29 Nov 2007Google Scholar
  57. Krähenbühl F, Stöckli HF, Brunner F, Kahr G, Müller- Vonmoos M (1987) Study of the water-bentonite system by vapour adsorption, immersion calorimetry and X-ray techniques: I. Micropore volumes and internal surface areas following Dubinin’s theory. Clay Miner 22(1):1–9CrossRefGoogle Scholar
  58. Kulhawy FH, Beech JF, Trautmann CH (1989) Influence of geologic development on horizontal stress in soil. Foundation engineering: current principles and practices. ASCE, Evanston, IL, pp 43–57Google Scholar
  59. Lemieux J-M (2011) Review: the potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources. Hydrogeol J 19(4):757–778CrossRefGoogle Scholar
  60. LGRB (2010) Geologische Untersuchungen von Baugrundhebungen im Bereich des Erdwärmesondenfeldes beim Rathaus in der historischen Altstadt von Staufen i. Br. (Geological Investigations of ground heaves in the area of the ground source heat exchanger field at the town hall in the historic town center of Staufen i. Br.). Landesamt für Geologie, Rohstoffe und Bergbau Baden-Württemberg, Freiburg i. Br., GermanyGoogle Scholar
  61. Lippmann F (1976) Corrensite, a swelling clay mineral, and its influence on floor heave in tunnels in the Keuper formation. Bull Int Assoc Eng Geol 13:65–68CrossRefGoogle Scholar
  62. MacDonald GJF (1953) Anhydrite-gypsum equilibrium relations. Am J Sci 251:884–898CrossRefGoogle Scholar
  63. Madsen FT, Müller-Vonmoos M (1989) The swelling behaviour of clays. Appl Clay Sci 4(2):143–156CrossRefGoogle Scholar
  64. Madsen FT, Nüesch R (1990) Langzeitquellverhalten von Tongesteinen und tonigen Sulfatgesteinen (Long-term swelling behavior of clay rocks and argillaceous sulfate rocks). Institut für Grundbau und Bodenmechanik der ETH Zürich, ZurichGoogle Scholar
  65. Madsen FT, Nüesch R (1991) The swelling behaviour of clay-sulfate rocks. In: Wittke W (ed) 7th international congress on rock mechanics aachen, Germany, 16–20 Sep 1991. Balkema, Rotterdam, pp 285–288Google Scholar
  66. Madsen FT, Flückiger A, Hauber L, Jordan P, Voegtli B (1995) New investigations on swelling rocks in the Belchen tunnel, Switzerland. In: Fujii T (ed) 8th International Congress on Rock Mechanics, Tokyo, Japan, 22–30 Sept 1995. Balkema Publishers, A.A./Taylor & Francis, The Netherlands, pp 263–267Google Scholar
  67. Marsal D (1952) Der Einfluß des Druckes auf das system CaSO4–H2O (Influence of pressure on the system CaSO4–H2O). Heidelberger Beiträge zur Mineralogie und Petrographie 3(4):289–296Google Scholar
  68. Marshall WL, Slusher R (1966) Thermodynamics of calcium sulfate dihydrate in aqueous sodium chloride solutions, 0°–110°. J Phys Chem 70(12):4015–4027CrossRefGoogle Scholar
  69. Means WD, Li T (2001) A laboratory simulation of fibrous veins: some first observations. J Struct Geol 23(6–7):857–863CrossRefGoogle Scholar
  70. Müller-Salzburg L (1978) Der Felsbau. Dritter Band: Tunnelbau (Rock engineering. Third Volume: Tunneling). Enke, StuttgartGoogle Scholar
  71. Murray RC (1964) Origin and diagenesis of gypsum and anhydrite. J Sediment Res 34(3):512–523Google Scholar
  72. NAGRA (2002) Projekt opalinuston: synthese der geowissenschaftlichen Untersuchungsergebnisse (Project opalinus clay – synthesis of results of geoscientific investigations). NAGRA Technical Report Series, NTB 02-03, NAGRA, Wettingen, SwitzerlandGoogle Scholar
  73. Neuzil CE (2003) Hydromechanical coupling in geologic processes. Hydrogeol J 11(1):41–83CrossRefGoogle Scholar
  74. Noher HP, Meyer M, Zeh RM (2010) The anhydrite surface: cause of problems in tunnel constructions (new results based on measurements and observations). Rock Mechanics in Civil and Environmental Engineering, pp 343–346Google Scholar
  75. Noiriel C, Renard F, Doan ML, Gratier JP (2010) Intense fracturing and fracture sealing induced by mineral growth in porous rocks. Chem Geol 269(3–4):197–209CrossRefGoogle Scholar
  76. Nüesch R, Ko SC (2000) Influence of mineralogical composition to experimental swelling behaviour of shaley anhydrite rocks. In: Rammelmair D, Mederer J, Oberthür T, Heimann RB, Pentinghaus H (eds) ICAM 2000: 6th international congress on applied mineralogy, Göttingen, Germany, 17–19 July 2000. Balkema, pp 611–616Google Scholar
  77. Nüesch R, Madsen FT, Steiner W (1995) Long time swelling of anhydritic rocks: Mineralogical and microstructural evaluation. In: Fujii T (ed) 8th International congress on rock mechanics, Tokyo, Japan, 1995. Balkema Publishers, A.A./Taylor & Francis, Delft, pp 133–138Google Scholar
  78. Oldecop L, Alonso E (2012) Modelling the degradation and swelling of clayey rocks bearing calcium-sulphate. Int J Rock Mech Min Sci 54:90–102Google Scholar
  79. Olivella S, Carrera J, Gens A, Alonso EE (1994) Nonisothermal multiphase flow of brine and gas through saline media. Transp Porous Media 15:271–293CrossRefGoogle Scholar
  80. Olivella S, Gens A, Carrera J, Alonso EE (1996) Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media. Eng Comput (Swansea, Wales) 13:87–112CrossRefGoogle Scholar
  81. Partridge EP, White AH (1929) The solubility of calcium sulfate from 0 to 200°. J Am Chem Soc 51(2):360–370CrossRefGoogle Scholar
  82. Pierau B, Kiehl JR (1995) Widerstands- und Ausweichprinzip: Vergleich zweier Entwurfsmethoden für Tunnelbauten in quellfähigem Gebirge (Resistance and yield principle: comparison of two design approaches for tunnels in swelling rock). Taschenbuch für den Tunnelbau 1996. Verlag Glückauf, Essen, pp 226–247Google Scholar
  83. Pimentel E (2007a) A laboratory testing technique and a model for the swelling behavior of anhydritic rock. In: Paper presented at the 11th Congress of the International Society for Rock Mechanics, Lisbon, 9–13 July 2007, pp 143–146Google Scholar
  84. Pimentel E (2007b) Quellverhalten von Gesteinen—Erkenntnisse aus Laboruntersuchungen (Swelling of rocks—insights from laboratory testing). In: Frühjahrstagung der Schweizerischen Gesellschaft für Boden- und Felsmechanik, Fribourg, Switzerland, 27 April 2007. Mitteilungen der Schweizerischen Gesellschaft für Boden- und Felsmechanik 154, pp 11–20Google Scholar
  85. Ramon A (2014) Expansion mechanisms in sulphated rocks and soils. PhD thesis, Universitat Politècnica de Catalunya, BarcelonaGoogle Scholar
  86. Ramon A, Alonso EE (2013) Heave of a railway bridge: modelling gypsum crystal growth. Géotechnique 63:720–732CrossRefGoogle Scholar
  87. Ramon A, Alonso EE (2014) Crystal growth and soil expansion: The role of interfacial pressure and pore structure. In: Khalili N, Russell AR, Khoshghalb A (eds) Unsaturated soils: research and applications—proceedings of the 6th international conference on unsaturated soils, UNSAT 2014, Sidney, Australia, Juliy 2–4 2014, CRC Press, pp 875–881Google Scholar
  88. Rauh F, Spaun G, Thuro K (2006) Assessment of the swelling potential of anhydrite in tunnelling projects. In: Culshaw M, Reeves H, Spink T, Jefferson I (eds) 10th IAEG international congress, Nottingham, UK, September 6–10, 2006. IAEG Engineering geology for tomorrow´s cities, paper No 473, 8 ppGoogle Scholar
  89. Ruch C, Wirsing G (2013) Erkundung und Sanierungsstrategien im Erdwärmesonden-Schadensfall Staufen i. Br (Exploration and rehabilitation strategies in case of damaging geothermal heat exchangers in Staufen i. Br.). Geotechnik 36(3):147–159CrossRefGoogle Scholar
  90. Rutqvist J, Stephansson O (2003) The role of hydrochemical coupling in fractured rock engineering. Hydrogeol J 11(1):7–40CrossRefGoogle Scholar
  91. Sahimi M (2011) Flow and transport in porous media and fractured rock: from classical methods to modern approaches, 2nd edn. Wiley-VCH, Weinheim 709 pp CrossRefGoogle Scholar
  92. Sahores J (1962) Contribution a l’etude des phenomenes mechaniques accompagnant l’hydratation de l’anhydrite. PhD thesis, ToulouseGoogle Scholar
  93. Sass I, Burbaum U (2010) Damage to the historic town of Staufen (Germany) caused by geothermal drillings through anhydrite-bearing formations. Acta Carsol 39(2):233–245CrossRefGoogle Scholar
  94. Sass I, Burbaum U (2012) Geothermische Bohrungen in Staufen im Breisgau: schadensursachen und Perspektiven (Geothermal drillings in Staufen im Breisgau: causes of damage and perspectives). Geotechnik 35(3):198–205CrossRefGoogle Scholar
  95. Schädlich B, Marcher T, Schweiger HF (2013) Application of a constitutive model for swelling rock to tunnelling. Geotech Eng 44:47–54Google Scholar
  96. Scherer GW (2004) Stress from crystallization of salt. Cem Concr Res 34:1613–1624CrossRefGoogle Scholar
  97. Schlenker B (1971) Petrographische Untersuchungen am Gipskeuper und Lettenkeuper von Stuttgart (Petrographic investigations of the Gipskeuper and Lettenkeuper formations in Stuttgart/Germany). Oberrheinische Geologische Abhandlungen 20:69–102Google Scholar
  98. Serafeimidis K, Anagnostou G (2012) On the kinetics of the chemical reactions underlying the swelling of anhydritic rocks. In: Proceedings EUROCK 2012—The 2012 ISRM international symposium, Stockholm, Sweden, 28–30 May 2012Google Scholar
  99. Serafeimidis K, Anagnostou G (2014) On the crystallisation pressure of gypsum. Environ Earth Sci 72(12):4985–4994CrossRefGoogle Scholar
  100. Serafeimidis K, Anagnostou G (2015) The solubilities and thermodynamic equilibrium of anhydrite and gypsum. Rock Mech Rock Eng 48(1):15–31CrossRefGoogle Scholar
  101. Serafeimidis K, Anagnostou G, Vrakas A (2015) Scale effects in relation to swelling pressure in anhydritic claystones. In: Geomechanics from micro to macro—proceedings of the TC105 ISSMGE international symposium on geomechanics from micro to macro, IS-Cambridge 2014, pp 795–800Google Scholar
  102. Steiger M (2005a) Crystal growth in porous materials - I: the crystallization pressure of large crystals. J Cryst Growth 282(3–4):455–469CrossRefGoogle Scholar
  103. Steiger M (2005b) Crystal growth in porous materials - II: influence of crystal size on the crystallization pressure. J Cryst Growth 282(3–4):470–481CrossRefGoogle Scholar
  104. Steiner W (1993) Swelling rock in tunnels - rock characterization, effect of horizontal stresses and construction procedures. Int J Rock Mech Min Sci Geomech Abstracts 30(4):361–380CrossRefGoogle Scholar
  105. Steiner W (2007) Influence of horizontal stresses on the swelling behaviour of gypsum keuper. Felsbau 25(1):15–22Google Scholar
  106. Steiner W, Kaiser PK, Spaun G (2010) Role of brittle fracture on swelling behaviour of weak rock tunnels: hypothesis and qualitative evidence. Geomech Tunn 3(5):583–596CrossRefGoogle Scholar
  107. Steiner W, Kaiser PK, Spaun G (2011) Role of brittle fracture in swelling behaviour: evidence from tunnelling case histories. Geomech Tunn 4(2):141–156CrossRefGoogle Scholar
  108. Stephansson O, Hudson JA, Jing L (2004) Coupled thermo-hydro-mechanical processes in geo-systems: fundamentals, modelling, experiments, and applications. Elsevier geo-engineering book series 2, Elsevier, Boston, 832 ppGoogle Scholar
  109. Thuro K (1993) Der Pulver-Quellversuch – ein neuer Quellhebungsversuch (The powder swelling test: a new swellability test). Geotechnik 16(3):101–106Google Scholar
  110. Wahlen R (2009) Validierung eines Berechnungsverfahrens für Tunnelbauwerke in quellfähigem Gebirge (Validation of a computational method for tunnels in swelling rock). Geotechnik in Forschung und Praxis - WBI-Print 17, 235 ppGoogle Scholar
  111. Wahlen R, Wittke W (2009) Kalibrierung der felsmechanischen Kennwerte für Tunnelbauten in quellfähigem Gebirge (Calibration of the rock mechanical parameters for tunnels in swelling rock). Geotechnik 32:226–233Google Scholar
  112. Wendler F, Mennerich C, Nestler B (2011) A phase-field model for polycrystalline thin film growth. J Cryst Growth 327(1):189–201CrossRefGoogle Scholar
  113. Wichter L (1989) Swelling of anhydriceous claystones. Bautechnik 66(1):1–6Google Scholar
  114. Winkler EM (1973) Stone: properties, durability. In: Man’s environment. Applied mineralogy, Vol 4. Springer, Wien, 230 ppGoogle Scholar
  115. Wittke W (1978) Grundlagen für die Bemessung uns Ausführung von Tunnels in quellendem Gebirge und ihre Anwendung beim Bau der Wendeschleife der S-Bahn Stuttgart (Fundamentals for the design and construction of tunnels in swelling rock and their application to the construction of the terminal loop of the urban railway of Stuttgart). Publications of the Institute for Foundation Engineering, Soil Mechanics, Rock Mechanics and Water Way Construction of RWTH Aachen Vol. 6, 132 ppGoogle Scholar
  116. Wittke W (1990) Rock mechanics - theory and application with case histories. Springer, BerlinGoogle Scholar
  117. Wittke M (2003) Begrenzung der Quelldrücke durch Selbstabdichtung beim Tunnelbau im anhydritführenden Gebirge (Limitation of swelling pressures by self-sealing in tunneling in anhydrite-bearing rock). Geotechnik in Forschung und Praxis WBI-Print vol 13, Verlag Glückauf, EssenGoogle Scholar
  118. Wittke W (2007) New high-speed railway lines Stuttgart 21 and Wendlingen-Ulm - Approximately 100 km of tunnels. In: Underground space - the 4th dimension of metropolises, Vols 1–3, pp 771–778Google Scholar
  119. Wittke W (2014) Rock mechanics based on an anisotropic jointed rock model (AJRM). Ernst, Berlin 875 pp CrossRefGoogle Scholar
  120. Wittke W, Wittke M, Wahlen R (2004) The source law of anhydrite containing Gipskeuper. Geotechnik 27(2):112–117Google Scholar
  121. Wittke-Gattermann P (1998) Verfahren zur Berechnung von Tunnels in quellfähigem Gebirge und Kalibrierung an einem Versuchsbauwerk (Approach for the design of tunnels in swelling rock and calibration at an experimental structure). PhD thesis, RWTH AachenGoogle Scholar
  122. Xie P, Beaudoin JJ (1992) Mechanism of sulphate expansion – I. Thermodynamic principle of crystallization pressure. Cem Concr Res 22(4):631–640CrossRefGoogle Scholar
  123. Yilmaz I (2001) Gypsum/anhydrite: some engineering problems. Bull Eng Geol Environ 60(3):227–230CrossRefGoogle Scholar
  124. Zorn T, Küchler R, Noack K, Dittmar T, Worch E (2009) Zur Gipsauflösung in Batch- und Säulenversuchen (Dissolution of gypsum with batch and column experiments). Grundwasser 14(4):287–295CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Christoph Butscher
    • 1
  • Thomas Mutschler
    • 1
  • Philipp Blum
    • 1
  1. 1.Karlsruhe Institute of Technology (KIT), Institute of Applied Geosciences (AGW)KarlsruheGermany

Personalised recommendations