Rock Mechanics and Rock Engineering

, Volume 49, Issue 5, pp 1985–1993 | Cite as

Thermomechanical Analysis of Different Types of Sandstone at Elevated Temperature

  • P. K. Gautam
  • A. K. Verma
  • S. Maheshwar
  • T. N. Singh
Technical Note

Keywords

Fire Sandstones Temperature Strain Thermal damage 

Notes

Acknowledgments

The authors greatly appreciate and acknowledge the scholarship provided under the INSPIRE Faculty Programme of the Department of Science and Technology, India.

References

  1. Allison RJ, Bristow GE (1999) The effects of fire on rock weathering: some further considerations of laboratory experimental simulations. Earth Surf Processes Land Forms 24:707–713CrossRefGoogle Scholar
  2. Allison RJ, Goudie AS (1994) The effects of fire on rock weathering: an experimental study. In: Robinson DA, Williams RBG (eds) Rock weathering and landform evolution. Wiley, Chichester, pp 41–56Google Scholar
  3. Alm O (1985) The influence of micro crack density on the elastic and fracture mechanical properties of stripa granite. Phys Earth Planet Inter 40:61–179CrossRefGoogle Scholar
  4. Alshayea NA, Khan K, Abduljauward SN (2000) Effects of confining pressure and temperature on mixed-mode (I–II) fracture toughness of a limestone rock. Int J Rock Mech Min Sci 37:629–643CrossRefGoogle Scholar
  5. Balme MR, Rocchi V, Jones C, Sammonds PR, Meredith PG, Boon S (2004) Fracture toughness measurements on igneous rocks using a high-pressure, high-temperature rock fracture mechanics cell. J Volcanol Geoth Res 132(2):159–172CrossRefGoogle Scholar
  6. BRE (1945) Repair of damaged buildings the repair of stonework damaged by fire. Garston Build Res Establ Note 21:1–5Google Scholar
  7. Brede M (1993) Brittle-to-ductile transition in silicon. Acta Metall Mater 41(1):211–228CrossRefGoogle Scholar
  8. CGWB (2010) Ground water scenario Dholpur district western region Jaipur, Ministry of water resources government of India, district groundwater brochureGoogle Scholar
  9. Chakrabarti B (1993) An assessment of effects of fire damage to stone in buildings and procedures for restoration and conservation of stone in some historic stone buildings. Build Res Establ Note 93(15):2–14Google Scholar
  10. Chakrabarti B, Yates T, Lewry A (1996) Effect of fire damage on natural stonework in buildings. Constr Build Mater 10:539–544CrossRefGoogle Scholar
  11. Chen CJ, Hsieh WD, Hu WC, Lai CM, Lin TH (2010) Experimental investigation and numerical simulation of a furnished office fire. Build Environ 45:2735–2742CrossRefGoogle Scholar
  12. Cheng Z, Arson C (2014) A thermo-mechanical damage model for rock stiffness during anisotropic crack opening and closure. Acta Geotech 9:847–867CrossRefGoogle Scholar
  13. Domanski M, Webb J (2007) A review of heat treatment research. Lithic Technology, 153–194Google Scholar
  14. Dorn RI (2003) Boulder weathering and erosion associated with a wildfire, Sierra Ancha Mountains, Arizona. Geomorphology 55:155–171CrossRefGoogle Scholar
  15. Dwivedi RD, Goel RK, Prasad VVR, Sinha A (2008) Thermo-mechanical properties of Indian and other granites. Int J Rock Mech Min Sci 45:303–315CrossRefGoogle Scholar
  16. Fitzner B, Heinrichs K, Bouchardiere LD (2003) Weathering damage on Pharaonic sandstone monuments in Luxor-Egypt. Build Environ 38:1089–1103CrossRefGoogle Scholar
  17. Goudie AS, Allison RJ, McClaren SJ (1992) The relations between modulus of elasticity and temperature in the context of the experimental simulation of rock weathering by fire. Earth Surf Proc Land 17:605–615CrossRefGoogle Scholar
  18. Hajpal M (1999) Behavior of sandstones of historical monuments under thermal influence. Period Polytech 43(2):207–218Google Scholar
  19. Hajpal M (2002) Changes in sandstones due to thermal effect. Unpublished PhD thesis (In Hungarian with English and German abstract), Budapest University of Technology and Economics, BudapestGoogle Scholar
  20. Hajpal M (2002b) Changes in sandstones of historical monuments exposed to fire or high temperature. Fire Technol 38(4):373–382CrossRefGoogle Scholar
  21. Heuze FE (1983) High-temperature mechanical, physical and thermal properties of granitic rocks-a review. Int J Rock Mech Min Sci Geomech Abstr 20(1):3–10CrossRefGoogle Scholar
  22. Hudson JA, Stephansson O, Andersson J (2005) Guidance on numerical modeling of thermo-hydro-mechanical coupled processes for performance assessment of radioactive waste repositories. Int J Rock Mech Min Sci 42(5/6):850–870CrossRefGoogle Scholar
  23. Hueckel T, Peano A, Pellegrint R (1994) A constitutive law for thermo plastic behavior of rocks: an analogy with clays. Surveys Geophys 15:643–671CrossRefGoogle Scholar
  24. ISRM (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int J Rock Mech Min Sci Geomech Abstr 16:135–140Google Scholar
  25. Jaeger JC, Cook NGW, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Wiley-Blackwell, OxfordGoogle Scholar
  26. Kirby SH, Stein S, Okal EA, Rubie DC (1996) Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Rev Geophys 34:261–306CrossRefGoogle Scholar
  27. Lion M, Skoczylas F, Ledesert B (2005) Effects of heating on the hydraulic and poroelastic properties of Bourgogne limestone. Int J Rock Mech Min Sci 42(4):508–520CrossRefGoogle Scholar
  28. Mao X, Zhang L, Li T, Liu H (2009) Properties of failure mode and thermal damage for limestone at high temperature. Min Sci Technol 19:290–294Google Scholar
  29. Ranjith PG, Daniel RV, Chen BJ, Samintha AM, Perera MSA (2012) Transformation plasticity and the effect of temperature on the mechanical behavior of Hawkesbury sandstone at atmospheric pressure. Eng Geol 15:120–127Google Scholar
  30. Rao Q, Wang Z, Xie H, Xie Q (2007) Experimental study of properties of sandstone at high temperature. J Cent South Univ Tech 14(s1):478–483CrossRefGoogle Scholar
  31. Schmidt P, Masse S, Laurent G, Slodczyk A, Le Bourhis E, Perrenoud C, Fröhlich F (2012) Crystallographic and structural transformations of sedimentary chalcedony in flint upon heat treatment. J Archaeol Sci 39(1):135–144CrossRefGoogle Scholar
  32. Somerton WH (1992) Thermal properties and temperature-related behavior of rock/fluid systems. Elsevier, Amsterdam, pp 22, 29, 187Google Scholar
  33. Tian H, Kempka T, Xiong X, Ziegler M (2012) Physical properties of sandstones after high temperature treatment. Rock Mech Rock Eng 45(6):1113–1117CrossRefGoogle Scholar
  34. Wu Z, Qin BD, Chen LJ, Luo YJ (2005) Experimental study on mechanical character of sandstone of the upper plank of coal bed under high temperature. Chin J Rock Mech Eng 24(11):1863–1867Google Scholar
  35. Xu X, Gao F, Shen X, Xie H (2008) Mechanical characteristics and microcosmic mechanisms of granite under temperature loads. J Chin Univ Min Tech 18:413–417CrossRefGoogle Scholar
  36. Yavuz H, Demirdag S, Caran S (2010) http://www.sciencedirect.com/science/article/pii/S1365160909001531-aff2. Thermal effect on the physical properties of carbonate rocks. Int J Rock Mech Min Sci 47:94–103
  37. Zhang LY, Mao XB, Lu AH (2009) Experimental study on the mechanical properties of rocks at high temperature. Sci China E-Tech Sci 40(2):157–162Google Scholar
  38. Zhang L, Mao X, Liu R, Guo X, Ma D (2014) The mechanical properties of mudstone at high temperatures: an experimental study. Rock Mech Rock Eng 47:1479–1484CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • P. K. Gautam
    • 1
    • 2
  • A. K. Verma
    • 1
    • 2
  • S. Maheshwar
    • 1
    • 2
  • T. N. Singh
    • 1
    • 2
  1. 1.Department of Mining EngineeringIndian School of MinesDhanbadIndia
  2. 2.Department of Earth ScienceIndian Institute of TechnologyMumbaiIndia

Personalised recommendations