Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Mechanistic Analysis of Rock Damage Anisotropy and Rotation Around Circular Cavities

  • 552 Accesses

  • 3 Citations

Abstract

We used the differential stress-induced damage (DSID) model to predict anisotropic crack propagation under tensile and shear stress. The damage variable is similar to a crack density tensor. The damage function and the damage potential are expressed as functions of the energy release rate, defined as the thermodynamic force that is work-conjugate to damage. Contrary to the previous damage models, flow rules are obtained by deriving dissipation functions by the energy release rate, and thermodynamic consistency is ensured. The damage criterion is adapted from the Drucker–Prager yield function. Simulations of biaxial stress tests showed that: (1) three-dimensional states of damage can be obtained for three-dimensional states of stress; (2) no damage propagates under isotropic compression; (3) crack planes propagate in the direction parallel to major compression stress; (4) damage propagation hardens the material; (5) stiffness and deformation anisotropy result from the anisotropy of damage. There is no one-to-one relationship between stress and damage. We demonstrated the effect of the loading sequence in a two-step simulation (a shear loading phase and a compression loading phase): the current state of stress and damage can be used to track the effect of stress history on damage rotation. We finally conducted a sensitivity analysis with the finite element method, to explore the stress conditions in which damage is expected to rotate around a circular cavity subject to pressurization or depressurization. Simulation results showed that: (1) before damage initiation, the DSID model matches the analytical solution of stress distribution obtained with the theory of elasticity; (2) the DSID model can predict the extent of the tensile damage zone at the crown, and that of the compressive damage zone at the sidewalls; (3) damage generated during a vertical far-field compression followed by a depressurization of the cavity is more intense than that generated during a depressurization of the cavity followed by a vertical far-field compression.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Abu Al-Rub RK, Kim SM (2010) Computational applications of a coupled plasticity-damage constitutive model for simulating plain concrete fracture. Eng Fract Mech 77:1577–1603

  2. Abu Al-Rub RK, Voyiadjis GZ (2003) On the coupling of anisotropic damage and plasticity models for ductile materials. Int J Solids Struct 40:2611–2643

  3. Arson C (2009) Etude théorique et numérique de l’endommagement thermo-hydro-mécanique des milieux poreux non saturés. PhD thesis, Ecole Nationale des Ponts et Chaussées, Paris

  4. Arson C (2012) Using a geo-mechanical damage model to assess permeability in cracked porous media: internal length parameter issues. Special Topics Rev Porous Media 3:69–77

  5. Ashby MF, Sammis CG (1990) The damage mehcanics of brittle solids in compression. Pure Appl Geophys 133(3):489–521

  6. Bakhtiary E, Xu H, Arson C (2014) Probabilistic optimization of a continuum mechanics model to predict differential stress-induced damage in claystone. Int J Rock Mech Min Sci

  7. Bobet A, Einstein H (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7)

  8. Carter NL, Hansen FD (1983) Creep of rocksalt. Tectonophysics 92(4):275–333

  9. Chaboche JL (1992) Damage induced anisotropy: on the difficulties associated with the active/passive unilateral condition. Int J Damage Mech 1:148–171

  10. Chaboche JL (1993) Development of continuum damage mechanics for elastic solids sustaining anisotropic and unilateral damage. Int J Damage Mech 2:311–329

  11. Chan K, Munson D, Bodner S, Fossum A (1996) Cleavage and creep freacture of rock salt. Acta Mater 44(9):3553–3565

  12. Chan KS, Bodner SR, Munson DE (2001) Permeability of wipp salt during damage evolution and healing. Int J Damage Mech 10(4):347–375

  13. Cicekli U, Voyiadjis GZ (2007) A plasticity and anisotropic damage model for plain concrete. Int J Plasticity 23:1874–1900

  14. Collins IF, Houlsby GT (1997) Application of thermomechanical principles to the modelling of geotechnical materials. Proc Math Phys Eng Sci 453(1964):1975–2001

  15. Crossno P, Rogers DH, Brannon RM, Coblentz D, Fredrich JT (2005) Visualization of geologic stress perturbations using mohr diagrams. IEEE Trans Vis Comput Graphics 11(5):508–518

  16. Deng H, Nemat-Nasser S (1992) Dynamic damage evolution in brittle solids. Mech Mater 14:83–103

  17. Desmorat R (2006) Positivité de la dissipation intrinsèque d’une classe de modèles d’endommagement anisotropes non standards. Comptes Rendus Mecanique

  18. Dyskin AV, Germanovich LN, Ustinov KB (1999) A 3-d model of wing crack growth and interaction. Eng Fract Mech 63(1):81–110

  19. Frémond M, Nedjar B (1996) Damage, gradient of damage and principle of virtual power. Int J Solids Struct 33:2294–2306

  20. Gatmiri B, Arson C (2008) Theta-stock, a powerful tool for thermohydromechanical behaviour and damage modelling of unsaturated porous media. Comput Geotech 35(8):890–915

  21. Halm D, Dragon A (1998) An anisotropic model of damage and frictional sliding for brittle materials. Eur J Mech A Solids 17(3):439–460

  22. Halm D, Dragon A (2002) Modelisation de l’endommagement par mesofissuration du granite. Revue Francaise de Genie Civi 17:21–33

  23. Hansen N, Schreyer H (1994) A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int J Solids Struct 31(3):359–389

  24. Hayakawa K, Murakami S (1997) Thermodynamical modeling of elastic-plastic damage and experimental validation of damage potential. Int J Damage Mech 6:333–363

  25. Homand-Etienne F, Hoxha D, Shao JF (1998) A Continuum Damage Constitutive Law for Brittle Rocks. Comput Geotech 22(2):135–151

  26. Horii H, Nemat-Nasser S (1986) Brittle failure in compression: splitting, faulting and brittle-ductile transition. Philos Trans R Soc Lond Ser A Math Phys Sci 319(1549):337–374

  27. Hou Z (2003) Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities. Int J Rock Mech Min Sci 40(5):725–738

  28. Houlsby GT, Puzrin AM (2006) Principles of hyperplasticity an approach to plasticity theory based on thermodynamic principles. London

  29. Huang C, Subhash G, Vitton SJ (2002) A dynamic damage growth model for uniaxial compressive response of rock aggregates. Mech Mater 34:267–277

  30. Hunsche U, Hampel A (1999) Rock salt—the mechanical properties of the host rock material for a radioactive waste repository. Eng Geol 52(3–4):271–291

  31. Hütter M, Tervoort T (2008) Continuum damage mechanics: combining thermodynamics with a thoughtful characterization of the microstructure. Acta Mech 201(1–4):297–312

  32. Jaeger JC, Cook NG, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Blackwell Publishing

  33. Kachanov M (1992) Effective elastic properties of cracked solids: critical review of some basic concepts. Appl Mech Rev 45(8):304–335

  34. Keller A, Hutter K (2011) On the thermodynamic consistency of the equivalence principle in continuum damage mechanics. J Mech Phys Solids 59(5):1115–1120

  35. Krajcinovic D (1996) Damage mechanics. North-Holland, Amsterdam

  36. Lauterbach B, Gross D (1998) Crack growth in brittle solids under compression. Mech Mater 29(2):81–92

  37. Lee J, Fenves G (1998) Plastic-damage model for cyclic loading of concrete structures. J Eng Mech 124:892–900

  38. Lemaître J, Desmorat R (2005) Engineering damage mechanics. Ductile, creep, fatigue and brittle failure. Springer, Berlin

  39. Lubliner J, Oliver J, Oller S, Onate E (1989) A platic-damage model for concrete. Int J Solids Struct 23(3):299–326

  40. Lux KH, Eberth S (2007) Fundamentals and first application of a new healing model for rock salt. In: Proceedings and monographs in engineering, water and earth sciences, pp 129–138

  41. Mazars J (1986) A description of micro- and macro scale damage of concrete structures. Eng Fract Mech 25(5–6):729–737

  42. Mazars J, Pijaudier-Cabot G (1989) Continuum damage theory—application to concrete. J Eng Mech 115(2):345–365

  43. Murakami S, Kamiya K (1996) Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics. Int J Mech Sci 39:473–486

  44. Nemat-Nasser S, Hori M (eds) (1983) Rock failure in compression. Ninth workshop geothermal reservoir engineering. Stanford University, Stanford

  45. Oda M (1982) Fabric tensor for discontinuous geological materials. Soils Found 22(4):96–108

  46. Oda M (1984) Similarity rules of crack geometry in statistically homogeneous rock masses. Mech Mater 3:119–129

  47. Ortiz M (1985) A constitutive theory for the inelastic behaviour of concrete. Mech Mater 4:67–93

  48. Pellet F, Hajdu A, Deleruyelle F, Besnus F (2005) A viscoplastic model including anisotropic damage for the time dependent behaviour of rock. Int J Numer Anal Meth Geomech 29:941–970

  49. Raj R (1982) Creep in polycrystalline aggregates by matter transport through a liquid phase. J Geophys Res 87(B6):4731–4739

  50. Senseny PE, Hansen FD, Russell JE, Carter NL, Handin JW (1992) Mechanical behaviour of rock salt: phenomenology and micromechanisms. Int J Rock Mech Min Sci Geomech Abstr 29(4):363–378

  51. Shao J, Zhou H, Chau K (2005) Coupling between anisotropic damage and permeability variation in brittle rocks. Int J Numer Anal Meth Geomech 29(12):1231–1247

  52. Shao JF, Chau KT, Feng XT (2006) Modeling of anisotropic damage and creep deformation in brittle rocks. Int J Rock Mech Min Sci 43:582–592

  53. Steif PS (1984) Crack extension under compressive loading. Eng Fract Mech 20(3):463–473

  54. Swoboda G, Yang Q (1999) An energy-based damage model of geomaterials. I. Formulation and numerical results. Int J Solids Struct 36(12):1719–1734

  55. Voyiadjis GZ, Shojaei A, Li G (2011) A thermodynamic consistent damage and healing model for self healing materials. Int J Plast 27(7):1025–1044

  56. Willemse EJ, Pollard DD (1998) On the orientation and patterns of wing cracks and solution surfaces at the tips of a sliding flaw or fault. J Geophys Res Solid Earth (1978–2012) 103(B2):2427–2438

  57. Xu H (2014) Theoretical and numerical modeling of anisotropic damage in rock for energy geomechancis. PhD thesis, Georgia Institute of Technology

  58. Xu H, Arson C (2014) Anisotropic damage models for geomaterials: theoretical and numerical challenges. Int J Comput Methods Spec Issue Comput Geomech 11(2)

  59. Yu H (2006) Plasticity and geotechnics. Springer, Berlin

  60. Zhou H, Hu D, Zhang F, Shao J (2011) A thermo-plastic/viscoplastic dmage model for geomaterials. Acta Mech Solida Sin 24(3):195–208

  61. Zhou J, Shao J, Xu W (2006) Coupled modeling of damage growth and permeability variation in brittle rocks. Mech Res Commun 33(4):450–459

  62. Zhu C, Arson C (2014) A thermo-mechanical damage model for rock stiffness during anisotropic crack opening and closure. Acta Geotech. doi:10.1007/s11,440-013-0281-0

Download references

Acknowledgments

This study was conducted at the Georgia Institute of Technology, as part of a research program on Finite Element Modeling of Hydraulic Fracturing. Funding was provided by ConocoPhillips, Houston, Texas.

Author information

Correspondence to Chloé Arson.

Notation: List of Parameters

Notation: List of Parameters

Symbol Name Dimensions SI units
\(\varvec{\Omega }\) Damage tensor \({\mathrm{M}} ^{0}{\mathrm{L} }^{0}{\mathrm T}^{0}\)
\(N\) Number of cracks \({\mathrm M} ^0{\mathrm L} ^0{\mathrm T} ^0\)
\(d_{k}\) Volumetric fraction of the cracks \({\mathrm M} ^0{\mathrm L} ^0{\mathrm T} ^0\)
\(\mathbf {n}_{k}\) Normal direction of the kth crack \({\mathrm M} ^{0}{\mathrm L}^0{\mathrm T}^{0}\)
\(r_{i}\) Radius of the ith crack plane \({\mathrm M}^{0}{\mathrm L}^{1}{\mathrm T}^{0}\) mm
\(e_{i}\) Thickness of the ith crack plane \({\mathrm M} ^0{\mathrm L} ^1{\mathrm T} ^0\) mm
\(\varvec{\varepsilon }\) Total strain \({\mathrm M} ^0{\mathrm L} ^0{\mathrm T} ^0\)
\(\varvec{\varepsilon }^{el}\) Pure elastic strain \(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)
\(\varvec{\varepsilon }^{ed}\) Elasto-damage strain \(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)
\(\varvec{\varepsilon }^{id}\) Irreversible strain \(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)
\(\varvec{\varepsilon }^{E}\) Total elastic strain \(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)
\(\varvec{\sigma }\) Stress \(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\) MPa
\(\mathbf {Y}\) Damage conjugated force \(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\) MPa
\(\dot{\varvec{\Omega }}\) Damage rate \(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)
\(\varvec{\varepsilon }^{el}\) Pure elastic strain \(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)
\(G_{\mathrm{s}}\) Gibbs free energy \(\mathrm M ^1\mathrm L ^2\mathrm T ^{-2}\) J
\(\mathbb {S}_{0}\) Initial compliance tensor \(\mathrm M ^{-1}\mathrm L ^1\mathrm T ^2\) GPa\({^{-1}}\)
\(a_{i}\) Material parameters accounting for stiffness due to damage \(\mathrm M ^{-1}\mathrm L ^1\mathrm T ^2\) GPa\({^{-1}}\)
\(\nu _{0}\) Initial Poisson’s ratio \(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)
\(E_{0}\) Initial Young’s modulus \(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\) GPa
\(\varvec{\delta }\) second-order identity tensor \(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)
\(f_{\mathrm{d}}\) Damage function \(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\) MPa
\(J^*\) Second invariant of the deviatoric part of the physical damage force \(\mathrm M ^2\mathrm L ^{-2}\mathrm T ^{-4}\) MPa\({}^{2}\)
\(I^*\) first invariant of the physical damage force \(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\) MPa
\(\alpha\) Material constant to control the shape of the cone \(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)
\(C_{0}\) Initial damage threshold \(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\) MPa
\(C_{1}\) Damage hardening variable \(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\) MPa
\(\mathbb {P}_{1}\) Projection tensor to make the damage driving force parallel to stress \(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)
\(\mathbb {P}_{2}\) Projection tensor to account for the damage rate direction \(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)
\(\sigma ^{(p)}\) pth eigenstress \(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\) MPa
\(\mathbf {n}^{(p)}\) pth principal direction \(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)
\(g_{\mathrm{d}}\) Damage potential \(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\) MPa
\(C_{2}\) Hardening variable in damage potential \(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\) MPa

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Arson, C. Mechanistic Analysis of Rock Damage Anisotropy and Rotation Around Circular Cavities. Rock Mech Rock Eng 48, 2283–2299 (2015). https://doi.org/10.1007/s00603-014-0707-5

Download citation

Keywords

  • Rock mechanics
  • Continuum damage mechanics
  • Thermodynamics
  • Finite element method
  • Damage rotation
  • Anisotropy
  • Circular cavity