Advertisement

Rock Mechanics and Rock Engineering

, Volume 48, Issue 4, pp 1711–1721 | Cite as

Correlation Between P-Wave Velocity and Physical–Mechanical Properties of Intensely Jointed Dolostones, Peloritani Mounts, NE Sicily

  • Giovanna PappalardoEmail author
Technical Note

Introduction

Understanding the fracture influence on the P-wave velocity and physical–mechanical properties of brittle rocks is very useful for geotechnical characterization in a number of engineering problems, e.g., slope stability, dam foundations, underground excavations, geothermal reservoirs, oil recovery, and nuclear waste disposal. After long-term geological evolutions and complicated conformations over millions of years, rocks have been submitted to accumulated stresses and there are various discontinuities at different scales, from meso- and microcracks to large faults and folds (Xie et al. 2011), affecting the rock mass behavior. Therefore, rock mass characterization is fundamental for a good assessment of its engineering properties. Moreover, the characterization of the intact rock, through laboratory tests on rock specimens (elementary volume), can play a significant role for a careful characterization of the rock type. Several authors (Han et al. 1986; Gaviglio 1989; Shon 1998...

Keywords

Jointed dolostone Peloritani Mounts Physical rock properties Uniaxial compressive strength P-wave velocity North-Eastern Sicily 

Notes

Acknowledgments

The author would like to thank the Editor-in-Chief, Giovanni Barla, for his valuable suggestions in the first review phase of the manuscript, the anonymous referees for their interest in the topic and advice, Simone Mineo for his help during the preparation and revision of the paper, and Stephen Conway for having read the manuscript and improved the written English.

References

  1. Aldega L, Corrado S, Di Paolo L, Somma R, Maniscalco R, Balestrieri ML (2011) Shallow burial and exhumation of the Peloritani Mountains (NE Sicily, Italy): insight from paleothermal and structural indicators. Geol Soc Am Bull 123(1–2):132–149CrossRefGoogle Scholar
  2. American Society for Testing and Materials (ASTM) (1983) Test methods for ultra violet velocities determination. ASTM D2845Google Scholar
  3. Antonellini M, Mollema PN (2000) A natural analog for a fractured and faulted reservoir in dolomite: Triassic Sella Group, Northern Italy. AAPG Bull 84(3):314–344Google Scholar
  4. Bieniawski ZT (1989) Engineering rock mass classifications. Wiley, New York, pp 251Google Scholar
  5. Boggs S Jr (2009) Petrology of sedimentary rocks, 2nd edn. Cambridge University Press, New York, pp 610CrossRefGoogle Scholar
  6. Catalano S, Corsaro RA, Marino M, Branca S, Cirrincione R, De Guidi G, Di Stefano A, Mazzoleni P (2010) Note illustrative della Carta Geologica d’Italia alla scala 1:50,000, Foglio 613, Taormina, pp 1–150. Available online at: http://www.isprambiente.gov.it/Media/carg/note_illustrative/613_Taormina.pdf
  7. Cirrincione R, Fazio E, Ortolano G, Pezzino A, Punturo R (2012) Fault-related rocks: deciphering the structural–metamorphic evolution of an accretionary wedge in a collisional belt, NE Sicily. Int Geol Rev 54(8):940–956CrossRefGoogle Scholar
  8. Das R, Cleary PW (2006) Uniaxial compression test and stress wave propagation modelling using SPH. In: Proceedings of the 5th International Conference on CFD in the Process Industries, Melbourne, Australia, 13–15 December 2006. CSIROGoogle Scholar
  9. Ferrara V, Pappalardo G (2005) Kinematic analysis of rock falls in an urban area: the case of Castelmola hill near Taormina (Sicily, Italy). Geomorphology 66:373–383CrossRefGoogle Scholar
  10. Finetti I, Lentini F, Carbone S, Catalano S, Del Ben A (1996) Il sistema Appennino Meridionale—Arco Calabro—Sicilia nel Mediterraneo centrale: studio geologico-geofisico. Boll Soc Geol Ital 115Google Scholar
  11. Gaviglio P (1989) Longitudinal waves propagation in a limestone: the relationship between velocity and density. Rock Mech Rock Eng 22:299–306CrossRefGoogle Scholar
  12. Ghisetti F (1979) Relazioni tra strutture e fasi trascorrenti e distensive lungo i sistemi Messina-Fiumefreddo, Tindari Leojanni e Alia-Malvagna (Sicilia nord-orientale): uno studio micro tettonico. Geol Romana 18:23–58Google Scholar
  13. Ghisetti F, Pezzino A, Atzori P, Vezzani L (1991) Un approccio strutturale per la definizione della linea di Taormina: risultati preliminari. Mem Soc Geol Ital 47:273–289Google Scholar
  14. Goodman RE (1989) Introduction to rock mechanics, 2nd edn. Wiley, New YorkGoogle Scholar
  15. Han D-H, Nur A, Morgan D (1986) Effects of porosity and clay content on wave velocities in sandstones. Geophysics 51:2093–2107CrossRefGoogle Scholar
  16. Ji SC, Wang Q, Xia B (2002) Handbook of seismic properties of mineral, rocks and ores. Polytechnic International Press, Montreal, 630 ppGoogle Scholar
  17. Kahraman S, Yeken T (2008) Determination of physical properties of carbonate rocks from P-wave velocity. Bull Eng Geol Environ 67:277–281CrossRefGoogle Scholar
  18. Lentini F, Carbone S, Catalano S, Di Stefano A, Gargano C, Romeo M, Strazzulla S, Vinci G (1995) Sedimentary evolution of basins in mobile belts: examples from the tertiary terrigenous sequences of the Peloritani Mountains (NE Sicily). Terra Nova 7:161–170CrossRefGoogle Scholar
  19. Lentini F, Carbone S, Catalano S, Grasso M (1996) Elementi per la ricostruzione del quadro strutturale della Sicilia Orientale. Mem Soc Geol Ital 51:179–195Google Scholar
  20. Lentini F, Catalano S, Carbone S (2000) Nota illustrativa della Carta geologica della Provincia di Messina (Sicilia Nord-Orientale). Scala 1:50,000. S.EL.CA, Firenze, pp 70Google Scholar
  21. Martínez-Martínez J, Benavente D, García Del Cura MA, Cañaveras JC (2006) Application of ultrasonics to brecciated dolostones for assessing their mechanical properties. In: Proceedings of the 10th IAEG International Congress, Nottingham, UK, 6–10 September 2006. Available online at: http://www.iaeg.info/iaeg2006/PAPERS/IAEG_243.pdf
  22. Monaco C, Tortorici L (2000) Active faulting in the Calabrian Arc and eastern Sicily. J Geodyn 29:407–424CrossRefGoogle Scholar
  23. Pappalardo G, Mineo S, Rapisarda F (2013a) Rockfall hazard assessment along a road on Peloritani Mounts (northeastern Sicily, Italy). Nat Hazards Earth Syst Sci Discuss 1:7167–7191. doi: 10.5194/nhessd-1-7167-2013 CrossRefGoogle Scholar
  24. Pappalardo G, Mineo S, Marchese G (2013b) Effects of cubical specimen sizing on the uniaxial compressive strength of Etna volcanic rocks (Italy). Ital J Eng Geol Environ 2:5–14. doi: 10.4408/IJEGE.2013-02.O-03 Google Scholar
  25. Punturo R, Pappalardo G (2009) Petrophysical and geomechanical rock properties: example from Jurassic limestone and dolostone, Peloritani Mounts (North-Eastern Sicily, Italy), In: Proceedings of Epitome 2009–Geoitalia 2009, Rimini, Italy, September 2009Google Scholar
  26. Rajabzadeh MA, Moosavinasab Z, Rakhshandehroo G (2012) Effects of rock classes and porosity on the relation between uniaxial compressive strength and some rock properties for carbonate rocks. Rock Mech Rock Eng 45(1):113–122CrossRefGoogle Scholar
  27. Sabatakakis N, Koukis G, Tsiambaos G, Papanakli S (2008) Index properties and strength variation controlled by microstructure for sedimentary rocks. Eng Geol 97:80–90CrossRefGoogle Scholar
  28. Sarkar K, Vishal V, Singh TN (2012) An empirical correlation of index geomechanical parameters with the compressional wave velocity. Geotech Geol Eng 30:469–479CrossRefGoogle Scholar
  29. Scandone P (1982) Structure and evolution of the Calabrian Arc. Earth Evol Sci 3:172–180Google Scholar
  30. Scandone P, Giunta G, Liguori V (1974) The connection between the Apulia and Sahara continental margins in the Southern Apennines and in Sicily. In: Proceedings of the CIESM XXVI Congress, Monaco, vol 23, no 4a, pp 1–99Google Scholar
  31. Shon JH (1998) Physical properties of rocks: fundamentals and principles of petrophysics. Elsevier, Oxford, pp 582Google Scholar
  32. Tourenq C, Fourmaintraux D, Denis A (1971) Propagation des ondes et discontinuities des roches. Proceedings of International Symposium on Rock Mechanics. ISRM, Nancy, FranceGoogle Scholar
  33. UNI EN 1936 (2007a) Metodi di prova per pietre naturali—Determinazione delle masse volumiche reale e apparente e della porosità totale e apertaGoogle Scholar
  34. UNI EN 1926 (2007b) Metodi di prova per pietre naturali—Determinazione della resistenza a compressioneGoogle Scholar
  35. Xie H, Pei J, Zuo J, Zhang R (2011) Investigation of mechanical properties of fractured marbles by uniaxial compression tests. J Rock Mech Geotech Eng 3(4):302–313Google Scholar
  36. Yagiz S (2010) Geomechanical properties of construction stones quarried in South-western Turkey. Sci Res Essays 5:750–757Google Scholar
  37. Yasar E, Erdogan Y (2004) Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. Int J Rock Mech Min Sci 41:871–875CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Dipartimento di Scienze Biologiche, Geologiche e AmbientaliUniversità di CataniaCataniaItaly

Personalised recommendations