Advertisement

Rock Mechanics and Rock Engineering

, Volume 47, Issue 5, pp 1625–1640 | Cite as

Injection-Sensitive Mechanics of Hydraulic Fracture Interaction with Discontinuities

  • D. ChuprakovEmail author
  • O. Melchaeva
  • R. Prioul
Original Paper

Abstract

We develop a new analytical model, called OpenT, that solves the elasticity problem of a hydraulic fracture (HF) contact with a pre-existing discontinuity natural fracture (NF) and the condition for HF re-initiation at the NF. The model also accounts for fluid penetration into the permeable NFs. For any angle of fracture intersection, the elastic problem of a blunted dislocation discontinuity is solved for the opening and sliding generated at the discontinuity. The sites and orientations of a new tensile crack nucleation are determined based on a mixed stress- and energy-criterion. In the case of tilted fracture intersection, the finite offset of the new crack initiation point along the discontinuity is computed. We show that aside from known controlling parameters such stress contrast, cohesional and frictional properties of the NFs and angle of intersection, the fluid injection parameters such as the injection rate and the fluid viscosity are of first-order in the crossing behavior. The model is compared to three independent laboratory experiments, analytical criteria of Blanton, extended Renshaw−Pollard, as well as fully coupled numerical simulations. The relative computational efficiency of OpenT model (compared to the numerical models) makes the model attractive for implementation in modern engineering tools simulating hydraulic fracture propagation in naturally fractured environments.

Keywords

Hydraulic fracture Natural fracture Fracture interaction Fracture arrest Fracture crossing Fracture reinitiation Fracture offsets Fracture tip blunting Fracture height containment Interface activation Interface permeability Renshaw−Pollard model Blanton model OpenT model 

Notes

Acknowledgments

The authors are grateful to Xi Zhang and Rob Jeffrey for providing support with MineHF2D code. They also thank Leonid Germanovich, Xiaowei Weng and Brice Lecampion for useful discussions, and Schlumberger for permission to publish the paper. Finally, at the review stage, they thank Alexei Savitski for insightful comments.

References

  1. Adachi JI, Detournay E (2002) Self-similar solution of a plane-strain fracture driven by a power-law fluid. Int J Numer Anal Meth Geomech 26(6):579–604. doi: 10.1002/nag.213 CrossRefGoogle Scholar
  2. Atkinson C, Thiercelin M (1995) The interaction between the wellbore and pre-existing fractures. Int J Fracture 73(3):183–200CrossRefGoogle Scholar
  3. Atkinson C, Thiercelin M (1997) Pressurization of a fractured wellbore. Int J Fracture 83(3):243–273CrossRefGoogle Scholar
  4. Barber JR (2010) Elasticity. Solid mechanics and its applications, 3rd edn. Springer, DordrechtCrossRefGoogle Scholar
  5. Beugelsdijk LJL, Pater CJd, Sato K (2000) Experimental hydraulic fracture propagation in a multi-fractured medium. In: SPE Asia Pacific conference on integrated modelling for asset management, Society of Petroleum EngineersGoogle Scholar
  6. Blanton TL (1986) Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs. In: SPE unconventional gas technology symposium, Society of Petroleum EngineersGoogle Scholar
  7. Chuprakov DA, Akulich AV, Siebrits E, Thiercelin M (2011) Hydraulic-fracture propagation in a naturally fractured reservoir. In: SPE production and operations, vol 26 (1). doi: 10.2118/128715-pa
  8. Chuprakov D, Melchaeva O, Prioul R (2013) Hydraulic fracture propagation across a weak discontinuity controlled by fluid injection. In: Bunger A, McLennan J, Jeffrey R (eds) Effective and sustainable hydraulic fracturing, InTech, pp 183–210. doi:44712Google Scholar
  9. Cipolla CL, Warpinski NR, Mayerhofer MJ (2008) Hydraulic fracture complexity: diagnosis, remediation, and exploitation. In: SPE Asia Pacific oil and gas conference and exhibition, Society of Petroleum EngineersGoogle Scholar
  10. Cipolla CL, Williams MJ, Weng X, Mack MG, Maxwell SC (2010) Hydraulic fracture monitoring to reservoir simulation: maximizing value. SPE annual technical conference and exhibition, Society of Petroleum EngineersGoogle Scholar
  11. Crouch SL, Starfield AM (1983) Boundary element methods in solid mechanics. George Allen & Unwin, LondonGoogle Scholar
  12. Dahi-Taleghani A, Olson JE (2011) Numerical modeling of multistranded-hydraulic-fracture propagation: accounting for the interaction between induced and natural fractures. In: SPE Journal (09). doi: 10.2118/124884-pa
  13. de Pater CJ, Beugelsdijk LJL (2005) Experiments and numerical simulation of hydraulic fracturing in naturally fractured rock. In: 40th U.S. rock mechanics symposium and 5th U.S.-Canada rock mechanics symposium, American Rock Society AssociationGoogle Scholar
  14. Detournay E (2004) Propagation regimes of fluid-driven fractures in impermeable rocks. Int J Geomech 4(1):35–45. doi: 10.1061/(asce)1532-3641(2004)4:1(35) CrossRefGoogle Scholar
  15. Garagash DI (2006) Propagation of a plane-strain hydraulic fracture with a fluid lag: early-time solution. Int J Solids Struct 43(18–19):5811–5835. doi: 10.1016/j.ijsolstr.2005.10.009 CrossRefGoogle Scholar
  16. Garagash DI, Detournay E (2000) The tip region of a fluid-driven fracture in an elastic medium. J Appl Mech Trans ASME 67(1):183–192CrossRefGoogle Scholar
  17. Garagash DI, Detournay E (2005) Plane-strain propagation of a fluid-driven fracture: small toughness solution. J Appl Mech Trans ASME 72(6):916–928. doi: 10.1115/1.2047596 CrossRefGoogle Scholar
  18. Garagash DI, Detournay E (2007) Erratum: plane-strain propagation of a fluid-driven fracture: small toughness solution (Journal of Applied Mechanics (2005) 72:6 (916-928)). J Appl Mech Trans ASME 74(4):832. doi: 10.1115/1.2745828 CrossRefGoogle Scholar
  19. Gil I, Nagel N, Sanchez-Nagel M, Damjanac B (2011) The Effect of operational parameters on hydraulic fracture propagation in naturally fractured reservoirs—getting control of the fracture optimization process. In: 45th US Rock mechanics/geomechanics symposium, American Rock Society AssociationGoogle Scholar
  20. Gu H, Weng X (2010) Criterion for fractures crossing frictional interfaces at non-orthogonal angles. In: 44th US rock mechanics symposium and 5th U.S.-Canada rock mechanics symposium, American Rock Society AssociationGoogle Scholar
  21. Gu H, Weng X, Lund JB, Mack MG, Ganguly U, Suarez-Rivera R (2011) Hydraulic fracture crossing natural fracture at non-orthogonal angles, a criterion, its validation and applications. In: SPE hydraulic fracturing technology conference, Society of Petroleum EngineersGoogle Scholar
  22. Hills DA, Kelly PA, Dai DN, Korsunsky AM (1996) Solution of crack problems., The distributed dislocation techniqueKluwer Academic Publishers, LondonCrossRefGoogle Scholar
  23. Jaeger JC, Cook NGW, Zimmermann RW (2007) Fundamentals of rock mechanics, 4th edn. Blackwell Publishing, MaldenGoogle Scholar
  24. Janssen M, Zuidema J, Wanhill RJH (2004) Fracture mechanics. Spon Press, AbingdonGoogle Scholar
  25. Jeffrey RG, Zhang X, Thiercelin MJ (2009) Hydraulic fracture offsetting in naturally fractured reservoirs: quantifying a long-recognized process. In: SPE hydraulic fracturing technology conference, Society of Petroleum EngineersGoogle Scholar
  26. Kresse O, Weng X, Wu R, Gu H (2012) Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations. American Rock Society AssociationGoogle Scholar
  27. Kresse O, Weng X, Chuprakov D, Prioul R, Cohen C (2013) Chapter 9: effect of flow rate and viscosity on complex fracture development in UFM model. In: Bunger A, McLennan J, Jeffrey R (eds) Effective and sustainable hydraulic fracturing, InTech, p 183–210Google Scholar
  28. Leguillon D (2002) Strength or toughness? A criterion for crack onset at a notch. Eur J Mech A-Solid 21(1):61–72 S0997-7538(01)01184-6CrossRefGoogle Scholar
  29. Leguillon D, Murer S (2008) A criterion for crack kinking out of an interface. Key Eng Mater 385–387:9–12CrossRefGoogle Scholar
  30. Leguillon D, Yosibash Z (2003) Crack onset at a v-notch. Influence of the notch tip radius. Int J Fracture 122(1–2):1–21CrossRefGoogle Scholar
  31. McLennan JD, Tran DT, Zhao N, Thakur SV, Deo MD, Gil IR, Damjanac B (2010) Modeling fluid invasion and hydraulic fracture propagation in naturally fractured formations: a three-dimensional approach. In: SPE international symposium and exhibition on formation damage control, Society of Petroleum EngineersGoogle Scholar
  32. Nagel NB, Gil I, Sanchez-nagel M, Damjanac B (2011) Simulating hydraulic fracturing in real fractured rocks—overcoming the limits of Pseudo3D models. In: SPE hydraulic fracturing technology conference, Society of Petroleum EngineersGoogle Scholar
  33. Olson JE, Taleghani AD (2009) Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures. In: SPE hydraulic fracturing technology conference, Society of Petroleum EngineersGoogle Scholar
  34. Olson JE, Wu K (2012) Sequential vs. simultaneous multizone fracturing in horizontal wells: insights from a non-planar, multifrac numerical model. In: SPE hydraulic fracturing technology conference, Society of Petroleum EngineersGoogle Scholar
  35. Renshaw CE, Pollard DD (1995) An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle, linear elastic-materials. Int J Rock Mech Min Sci Geomech Abstr 32(3):237–249CrossRefGoogle Scholar
  36. Shen B, Stephansson O (1993) Numerical-analysis of mixed mode-I and mode-II fracture propagation. Int J Rock Mech Min Sci Geomech Abstr 30(7):861–867CrossRefGoogle Scholar
  37. Shen B, Stephansson O (1994) Modification of the G-criterion for crack propagation subjected to compression. Eng Fract Mech 47(2):177–189CrossRefGoogle Scholar
  38. Valko P, Economides MJ (1995) Hydraulic fracture mechanics. John Wiley & Sons, ChichisterGoogle Scholar
  39. Warpinski NR, Teufel LW (1987) Influence of geologic discontinuities on hydraulic fracture propagation (includes associated papers 17011 and 17074). SPE J Pet Technol 39(2):209–220. doi: 10.2118/13224-pa CrossRefGoogle Scholar
  40. Weng X, Kresse O, Cohen CE, Wu R, Gu H (2011) Modeling of hydraulic-fracture-network propagation in a naturally fractured formation. In: SPE Journal, Society of Petroleum EngineersGoogle Scholar
  41. Wu R, Kresse O, Weng X, Cohen C-E, Gu H (2012) Modeling of interaction of hydraulic fractures in complex fracture networks. In: SPE hydraulic fracturing technology conference, Society of Petroleum EngineersGoogle Scholar
  42. Zhang X, Jeffrey RG (2006) The role of friction and secondary flaws on deflection and re-initiation of hydraulic fractures at orthogonal pre-existing fractures. Geophys J Int 166(3):1454–1465. doi: 10.1111/j.1365-246X.2006.03062.x CrossRefGoogle Scholar
  43. Zhang X, Jeffrey RG (2008) Reinitiation or termination of fluid-driven fractures at frictional bedding interfaces. J Geophys Res-Sol Ea 113(B08416):1–16 Artn B08416Google Scholar
  44. Zhang X, Jeffrey RG, Thiercelin M (2007) Deflection and propagation of fluid-driven fractures at frictional bedding interfaces: a numerical investigation. J Struct Geol 29(3):396–410. doi: 10.1016/j.jsg.2006.09.013 CrossRefGoogle Scholar
  45. Zhang X, Jeffrey RG, Thiercelin M (2009) Mechanics of fluid-driven fracture growth in naturally fractured reservoirs with simple network geometries. J Geophys Res 114(B12406):1–16. doi: 10.1029/2009JB006549 Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Schlumberger-Doll ResearchCambridgeUSA
  2. 2.JSC Gazprom neftSaint PetersburgRussian Federation

Personalised recommendations