Rock Mechanics and Rock Engineering

, Volume 47, Issue 1, pp 187–206 | Cite as

Numerical Modelling of the Anisotropic Mechanical Behaviour of Opalinus Clay at the Laboratory-Scale Using FEM/DEM

  • Andrea Lisjak
  • Bryan S. A. Tatone
  • Giovanni Grasselli
  • Tim Vietor
Original Paper


The Opalinus Clay (OPA) is an argillaceous rock formation selected to host a deep geologic repository for high-level nuclear waste in Switzerland. It has been shown that the excavation damaged zone (EDZ) in this formation is heavily affected by the anisotropic mechanical response of the material related to the presence of bedding planes. In this context, the purpose of this study is twofold: (i) to illustrate the new developments that have been introduced into the combined finite-discrete element method (FEM/DEM) to model layered materials and (ii) to demonstrate the effectiveness of this new modelling approach in simulating the short-term mechanical response of OPA at the laboratory-scale. A transversely isotropic elastic constitutive law is implemented to account for the anisotropic elastic modulus, while a procedure to incorporate a distribution of preferentially oriented defects is devised to capture the anisotropic strength. Laboratory results of indirect tensile tests and uniaxial compression tests are used to calibrate the numerical model. Emergent strength and deformation properties, together with the simulated damage mechanisms, are shown to be in strong agreement with experimental observations. Subsequently, the calibrated model is validated by investigating the effect of confinement and the influence of the loading angle with respect to the specimen anisotropy. Simulated fracture patterns are discussed in the context of the theory of brittle rock failure and analyzed with reference to the EDZ formation mechanisms observed at the Mont Terri Underground Research Laboratory.


Opalinus Clay Rock anisotropy FEM/DEM Brittle failure 


  1. Adhikary DP, Dyskin AV (1998) A continuum model of layered rock masses with non-associative joint plasticity. Int J Numer Anal Met 22(4):245–261CrossRefGoogle Scholar
  2. Amann F, Button EA, Evans KF, Gischig VS, Blümel M (2011) Experimental study of the brittle behaviour of clay shale in rapid unconfined compression. Rock Mech Rock Eng 44(4):415–430CrossRefGoogle Scholar
  3. Amann F, Kaiser PK, Button EA (2012) Experimental study of brittle behaviour of clay shale in rapid triaxial compression. Rock Mech Rock Eng 45(1):21–33CrossRefGoogle Scholar
  4. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7 (C):55–129CrossRefGoogle Scholar
  5. Besuelle P, Chambon R, Collin F (2006) Switching deformation modes in post-localization solutions with a quasi-brittle material. J Mech Mater Struct 1(7):1115–1134CrossRefGoogle Scholar
  6. Bieniawski ZT (1967) Mechanism of brittle fracture of rock. Part I: theory of the fracture process. Int J Rock Mech Min Sci 4(4):395–406CrossRefGoogle Scholar
  7. Bieniawski ZT, Hawkes I (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci 15:99–103CrossRefGoogle Scholar
  8. Blümling P, Bernier F, Lebon P, Martin CD (2007) The excavation damaged zone in clay formations time-dependent behaviour and influence on performance assessment. Phys Chem Earth 32(8–14):588–599CrossRefGoogle Scholar
  9. Bobet A, Einstein HH (1998a) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7):863–888CrossRefGoogle Scholar
  10. Bobet A, Einstein HH (1998b) Numerical modeling of fracture coalescence in a model rock material. Int J Fracture 92(3):221–252CrossRefGoogle Scholar
  11. Bock H (2001) RA experiment. Rock mechanics analysis and synthesis: conceptual model of the Opalinus Clay. Mont Terri Technical Note 2001–02Google Scholar
  12. Bock H (2009) RA Experiment. Updated review of the rock mechanics properties of the Opalinus Clay of the Mont Terri URL based on laboratory and field testing. Mont Terri Technical Report 2008–04Google Scholar
  13. Bossart P, Meier PM, Moeri A, Trick T, Mayor J-C (2002) Geological and hydraulic characterisation of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory. Eng Geol 66(1–2):19–38CrossRefGoogle Scholar
  14. Brace WF, Bombolakis EG (1963) A note on brittle crack growth in compression. J Geophys Res 68(12):3709–3713CrossRefGoogle Scholar
  15. Brace WF, Paulding BW Jr, Scholz C (1966) Dilatancy in the fracture of crystalline rocks. Geophys Res Lett 71(16):3939–3953Google Scholar
  16. Collin F, Chambon R, Charlier R (2006) A finite element method for poro-mechanical modelling of geotechnical problems using local second gradient models. Int J Numer Meth Eng 65(11):1749–1772CrossRefGoogle Scholar
  17. Corkum AG, Martin CD (2007) The mechanical behaviour of weak mudstone (Opalinus Clay) at low stresses. Int J Rock Mech Min Sci 44(2):196–209CrossRefGoogle Scholar
  18. Dedecker F, Cundall P, Billaux D, Groeger T (2007) Evaluation of damage-induced permeability using a three-dimensional adaptive continuum/discontinuum code (AC/DC). Phys Chem Earth 32(8–14):681–690Google Scholar
  19. Diederichs MS (2000) Instability of hard rockmasses: the role of tensile damage and relaxation. PhD Thesis, University of Waterloo, Waterloo, CanadaGoogle Scholar
  20. Diederichs MS (2003) Manuel rocha medal recipient rock fracture and collapse under low confinement conditions. Rock Mech Rock Eng 36(5):339–381CrossRefGoogle Scholar
  21. Donath FA (1972) Effects of cohesion and granularity on deformational behavior of anisotropic rock. In: Doc BR, Smith DK (eds) Studies in Mineralogy and Precambrian Geology, vol 135. Geological Society of America, USA, pp 95–128CrossRefGoogle Scholar
  22. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104CrossRefGoogle Scholar
  23. Duveau G, Shao JF, Henry JP (1998) Assessment of some failure criteria for strongly anisotropic geomaterials. Mech Cohes-Frict Mat 3(1):1–26CrossRefGoogle Scholar
  24. Evans R, Marathe M (1968) Microcracking and stress-strain curves for concrete in tension. Mater Struct 1(1):61–64Google Scholar
  25. Hillerborg A, Modeer M, Petersson P-E (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concrete Res 6(6):773–781CrossRefGoogle Scholar
  26. Hoek E, Brown ET (1980) Strength of jointed rock masses. Geotechnique 33(3):187–223CrossRefGoogle Scholar
  27. Horii H, Nemat-Nasser S (1986) Brittle failure in compression: splitting, faulting, and brittle-ductile transition. Philos T R Soc Lond 319:337–374CrossRefGoogle Scholar
  28. Itasca Consulting Group Inc (2012) FLAC. Fast Lagrangian Analysis of Continua, Version 7.0. Minneapolis, USAGoogle Scholar
  29. Jaeger JC, Cook NGW (1976) Fundamentals of rock mechanics. Chapman & Hall, LondonGoogle Scholar
  30. Jahns (2010) RA Experiment. Opalinus Clay rock characterization. Mont Terri Technical Note 2008–55revGoogle Scholar
  31. Jia P, Tang CA (2008) Numerical study on failure mechanism of tunnel in jointed rock mass. Tunn Undergr Sp Tech 23(5):500–507CrossRefGoogle Scholar
  32. Kaiser PK, Kim BH (2008) Rock mechanics advances of underground constructions and mining. In: Proceedings of the Korean rock mechanics symposium. Seoul, Korea, pp 1–6Google Scholar
  33. Kemeny J, Cook NGW (1986) Effective moduli, non-linear deformation and strength of a cracked elastic solid. Int J Rock Mech Min Sci 23(2):107–118CrossRefGoogle Scholar
  34. Klinkenberg M, Kaufhold S, Dohrmann R, Siegesmund S (2009) Influence of carbonate microfabrics on the failure strength of claystones. Eng Geol 107(1–2):42–54CrossRefGoogle Scholar
  35. Konietzky H, Blümling P, teKamp L (2003) Opalinuston—Felsmechanische Untersuchungen. Interner Bericht 03-08, NAGRA, Wettingen, SwitzerlandGoogle Scholar
  36. Labiouse V (2012) Hollow cylinder simulation experiments on Boom, Opalinus, Callovo-Oxfordian Clays. International Post-TIMODAZ Workshop, St-Ursanne, Switzerland, 6–7 February 2012Google Scholar
  37. Labuz JF, Shah SP, Dowding CH (1985) Experimental analysis of crack propagation in granite. Int J Rock Mech Min Sci 22(2):85–98CrossRefGoogle Scholar
  38. Lan H, Martin CD, Hu B (2010) Effect of heterogeneity of brittle rock on micro-mechanical extensile behaviour during compression loading. J Geophys Res 115:1–14Google Scholar
  39. Mahabadi OK (2012) Investigating the influence of micro-scale heterogeneity and microstructure on the failure and mechanical behaviour of geomaterials. PhD thesis, University of Toronto, Toronto, CanadaGoogle Scholar
  40. Mahabadi OK, Grasselli G, Munjiza A (2010) Y-GUI: A graphical user interface and pre-processor for the combined finite-discrete element code, Y2D, incorporating material inhomogeneity. Comput Geosci 36(2):241–252CrossRefGoogle Scholar
  41. Mahabadi OK, Lisjak A, Grasselli G, Munjiza A (2012a) Y-Geo: a new combined finite-discrete element numerical code for geomechanical applications. Int J Geomech. doi:10.1061/(ASCE)GM.1943-5622.0000216
  42. Mahabadi OK, Randall NX, Zong Z, Grasselli G (2012b) A novel approach for micro-mechanical characterization and modelling of geomaterials incorporating actual material heterogeneity. Geophys Res Lett 39:L01303CrossRefGoogle Scholar
  43. Martin CD (1997) Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength. Can Geotech J 34:239–254Google Scholar
  44. McLamore R, Gray KE (1967) The mechanical behavior of anisotropic sedimentary rocks. J Eng Ind-T Asme 89:62–73CrossRefGoogle Scholar
  45. Munjiza A (2004) The combined finite-discrete element method. Wiley, ChichesterCrossRefGoogle Scholar
  46. Munjiza A, Andrews KRF (2000) Discretised penalty function method in combined finite-discrete element analysis. Int J Num Meth Eng 49(11):1495–1520CrossRefGoogle Scholar
  47. Munjiza A, John NWM (2002) Mesh size sensitivity of the combined FEM/DEM fracture and fragmentation algorithms. Eng Fract Mech 69(2):281–295CrossRefGoogle Scholar
  48. Munjiza A, Owen DRJ, Bicanic N (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Eng Computation 12(2):145–174CrossRefGoogle Scholar
  49. Munjiza A, Andrews KRF, White JK (1999) Combined single and smeared crack model in combined finite-discrete element analysis. Int J Num Meth Eng 44(1):41–57CrossRefGoogle Scholar
  50. Naumann M, Hunsche U, Schulze O (2007) Experimental investigations on anisotropy in dilatancy, failure and creep of Opalinus Clay. Phys Chem Earth 32(8–14):889–895CrossRefGoogle Scholar
  51. Niandou H, Shao JF, Henry JP, Fourmaintraux D (1997) Laboratory investigation of the mechanical behavior of Tournemire shale. Int J Rock Mech Min Sci 34(1):3–16CrossRefGoogle Scholar
  52. Paterson MS, Wong T (2004) Experimental Rock Deformation—The Brittle Field. Springer, NewYorkGoogle Scholar
  53. Popp T, Salzer K (2007a) Anisotropy of seismic and mechanical properties of Opalinus Clay during triaxial deformation in a multi-anvil apparatus. Phys Chem Earth 32(8–14):879–888CrossRefGoogle Scholar
  54. Popp T, Salzer K (2007b) Laboratory tests on bedding planes. Mont Terri Technical Report 2007–04Google Scholar
  55. Popp T, Salzer K, Minkley W (2008) Influence of bedding planes to EDZ-evolution and the coupled HM properties of Opalinus Clay. Phys Chem Earth 33:S374–S387CrossRefGoogle Scholar
  56. Potyondy D, Cundall P (2000) Bonded-particle simulations of the in situ failure test at Olkiluoto. International Progress Report 01–13, SKB, Stockholm, SwedenGoogle Scholar
  57. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364CrossRefGoogle Scholar
  58. Riahi A, Curran JH (2009) Full 3D finite element Cosserat formulation with application in layered structures. Appl Math Model 33(8):3450–3464CrossRefGoogle Scholar
  59. Salager S, Nuth M, Laloui L (2010) Anisotropic features of the mechanical behaviour of Opalinus Clay. In: Zhao J, Labiouse V, Dudt J-P, Mathier J-F (eds) Proceedings of the European Rock Mechanics Symposium, Lausanne, Switzerland. Taylor & Francis Group, LondonGoogle Scholar
  60. Seeska R, Lux K-H (2012) Borehole deformation measurements and video-observations of boreholes in the Opalinus Clay of the Mont Terri URL. International Post-TIMODAZ Workshop, St-Ursanne, Switzerland, 6–7 February 2012Google Scholar
  61. Tang CA, Kaiser PK (1998) Numerical simulation of cumulative damage and seismic energy release during brittle rock failure - Part I: fundamentals. Int J Rock Mech Min Sci 35(2):113–121CrossRefGoogle Scholar
  62. Tang CA, Kou SQ (1998) Crack propagation and coalescence in brittle materials under compression. Eng Fract Mech 61(3–4):311–324CrossRefGoogle Scholar
  63. Tang CA, Lin P, Wong RHC, Chau KT (2001) Analysis of crack coalescence in rock-like materials containing three flaws—Part II: numerical approach. Int J Rock Mech Min Sci 38(7):925–939CrossRefGoogle Scholar
  64. Tapponnier P, Brace WF (1976) Development of stress-induced microcracks in Westerly Granite. Int J Rock Mech Min Sci 13(4):103–112CrossRefGoogle Scholar
  65. Tijssens MGA, Sluys BLG, van der Giessen E (2000) Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces. Eur J Mech A-Solid 19(5):761–779CrossRefGoogle Scholar
  66. Ting TCT (1996) Anisotropic elasticity: theory and applications. Oxford University PressGoogle Scholar
  67. Tsang C-F, Bernier F, Davies C (2005) Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays—in the context of radioactive waste disposal. Int J Rock Mech Min Sci 42(1):109–125CrossRefGoogle Scholar
  68. Turon A, Dávila CG, Camanho PP, Costa J (2007) An engineering solution to mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74(10):1665–1682CrossRefGoogle Scholar
  69. Vesga LF, Vallejo LE, Lobo-Guerrero S (2008) DEM analysis of the crack propagation in brittle clays under uniaxial compression tests. Int J Num Anal Meth 32(11):1405–1415CrossRefGoogle Scholar
  70. Vietor T, Li X, Fierz T (2012) In situ experiments in TIMODAZ. International Post-TIMODAZ Workshop, St-Ursanne, Switzerland, 6–7 February 2012Google Scholar
  71. Wanne T (2002) Rock strength and deformation dependence on schistosity. Simulation of rock with PFC3D. Report 2002–05, Posiva Oy, Helsinki, FinlandGoogle Scholar
  72. Yan M (2008) Numerical modelling of brittle fracture and step-path failure: from laboratory to rock slope scale. PhD Thesis, Simon Fraser University, Burnaby, CanadaGoogle Scholar
  73. You S, Zhao G, Ji H (2011) Model for transversely isotropic materials based on distinct lattice spring model (DLSM). J Computer 6:1139–1144Google Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Andrea Lisjak
    • 1
  • Bryan S. A. Tatone
    • 1
  • Giovanni Grasselli
    • 1
  • Tim Vietor
    • 2
  1. 1.Department of Civil EngineeringUniversity of TorontoTorontoCanada
  2. 2.National Cooperative for the Disposal of Radioactive Waste (NAGRA)WettingenSwitzerland

Personalised recommendations