Rock Mechanics and Rock Engineering

, Volume 47, Issue 1, pp 111–129 | Cite as

Thermal Conductivity of Argillaceous Rocks: Determination Methodology Using In Situ Heating Tests

  • Benoit GaritteEmail author
  • Antonio Gens
  • Jean Vaunat
  • Gilles Armand
Original Paper


This study focuses on the characterisation of thermal conductivity for three potential host rocks for radioactive waste disposal. First, the heat conduction process is reviewed on the basis of an analytical solution and key aspects related to anisotropic conduction are discussed. Then the existing information on the three rocks is summarised and a broad uncertainty range of thermal conductivity is estimated based on the mineralogical composition. Procedures to backanalyse the thermal conductivity on the basis of in situ heating tests are assessed and a methodology is put forward. Finally, this methodology is used to estimate the impact of experimental uncertainties and applied to the four in situ heating tests. In the three potential host rocks, a clear influence of the bedding planes was identified and anisotropic heat conduction was shown to be necessary to interpret the observed temperature field. Experimental uncertainties were also shown to induce a larger uncertainty on the anisotropy ratio than on the equivalent thermal conductivity defined as the geometric mean of the thermal conductivity in the three principal directions.


Callovo-Oxfordian Clay Boom Clay Opalinus Clay Thermal conductivity In situ experiments Heat 



The support of ANDRA for the development of this work is gratefully acknowledged. Two Technical Meetings for the HE-D experiment and nineteen Technical Meetings for the TER and TED experiments were held and financially supported by ANDRA. Those meetings involved many fruitful discussions, in particular with Yannick Wileveau, Michael Jobmann, Michel Filipi and Nathalie Conil. The important work on the in situ experiments and the laboratory experiments, by ANDRA, EURIDICE, NIRAS.ONDRAF and NAGRA, is duly acknowledged.


  1. ANDRA (2009) Dossier 2009, Référentiel du site Meuse/Haute Marne, Tome 1. C.RP.ADS.A09.0007Google Scholar
  2. Auvray C, Grigc D, Homand F (2005) Essais thermo-mecaniques ouvrage TER1301. ANDRA report C RP 0ENG 05-0378Google Scholar
  3. Bernier F, Li X-L, Bastiaens W (2007) Twenty-five years’ geotechnical observation and testing in the Tertiary Boom Clay formation. Géotechnique 57(2):229–237CrossRefGoogle Scholar
  4. Bock H (2009) RA experiment: updated review of the rock mechanics properties of the Opalinus Clay of the Mont Terri URL based on laboratory and field testing. Mont Terri Project. Technical report 2008-04Google Scholar
  5. Booker JR, Savvidou C (1985) Consolidation around a point heat source. Int J Numer Anal Methods Geomech 9:173–184CrossRefGoogle Scholar
  6. Carslaw HS, Jaeger JC (1946) Conduction of heat in solids. Oxford University Press, Oxford. ISBN: 0198533683Google Scholar
  7. Conil N, Gatimiri B, Armand G (2010) Premiers résultats de l’expérimentation TED. ANDRA report D.RP.AMFS.10.0067Google Scholar
  8. De Bruyn D, Labat S (2002) The second phase of ATLAS: the continuation of a running THM test in the HADES underground research facility at Mol. Eng Geol 64(2002):309–316CrossRefGoogle Scholar
  9. Delay J, Rebours H, Vinsot A, Robin P (2007) Scientific investigation in deep wells for nuclear waste disposal studies at the Meuse/Haute Marne underground research laboratory, Northeastern France. Phys Chem Earth 32:42–57CrossRefGoogle Scholar
  10. Djeran I, Bazargan B, Giraud A, Rousset G (1994) Étude expérimentale du comportement Thermo-Hydro-Mécanique de l’argile de Boom. Report ONDRAF 90/10/547Google Scholar
  11. Farouki O (1986) Thermal properties of soils. Trans Tech Pub., Rockport, MA. ISBN: 0878490558, 9780878490554Google Scholar
  12. Fernandez AM (2011) Determination of the specific heat capacity of materials used as confinement barrier at El Cabril. CIEMAT/DMA/2G208/3/11Google Scholar
  13. Gens A (2011) On the hydromechanical behaviour of argillaceous hard soils-weak rocks. In: XV European conference on soil mechanics & geotechnical engineering, AthensGoogle Scholar
  14. Gens A, Vaunat J, Garitte B, Wileveau Y (2007) In situ behaviour of a stiff layered clay subject to thermal loading. Observations and interpretation. Géotechnique 57(2):207–228CrossRefGoogle Scholar
  15. Gens A, Sanchez M, Guimaraes L, Do N, Alonso E, Lloret A, Olivella S, Villar MV, Huertas F (2009) A full-scale in situ heating test for high-level nuclear waste disposal: observations, analysis and interpretation. Géotechnique 59(4):377–399. doi: 10.1680/geot.2009.59.4.377 Google Scholar
  16. IAEA (2007) Estimation of global inventories of radioactive waste and other radioactive materials. IAEA-TECDOC-1591, ViennaGoogle Scholar
  17. IAEA (2009) Classification of radioactive waste. International Atomic Energy Agency No. GSG-1, ViennaGoogle Scholar
  18. Jobmann M, Polster M (2007) Investigation on thermal expansion effects in clay formations. TEE Final Report (DBE-Tec)Google Scholar
  19. Lima Amorim A (2011) Thermo-hydro-mechanical behaviour of two deep Belgian clay formations: Boom and Ypresian Clays. Thesis, Technical University of Catalunya, 253pGoogle Scholar
  20. Olivella S (1995) Nonisothermal multiphase flow of brine and gas through saline media. Doctoral thesis, Technical University of Catalonia (UPC), Barcelona, SpainGoogle Scholar
  21. Robertson EC (1988) Thermal properties of rocks. Open-File Report 88-441. US Geological surveyGoogle Scholar
  22. Romero E (1999) Characterization and thermo-hydro-mechanical behaviour of unsaturated Boom Clay: an experimental study. PhD thesis, Technical University of Catalunya, 405pGoogle Scholar
  23. Thury M, Bossart P (1999) The Mont Terri rock laboratory, a new international research project in a Mesozoic shale formation, in Switzerland. Eng Geol 52(1999):347–359CrossRefGoogle Scholar
  24. Tsang CF, Barnichon JD, Birkholzer J, Li XL, Liu HH, Sillen X (2012) Coupled thermo-hydro-mechanical processes in the near field of a high-level radioactive waste repository in clay formations. Int J Rock Mech Min Sci 49(2012):31–44CrossRefGoogle Scholar
  25. Van Cauteren L (1994) Evaluatie van de warmtegeleidbaarheid en de warmtecapaciteit van de Boomse Klei. ONDRAF note nr 94-0605Google Scholar
  26. Wileveau Y (2005) THM behaviour of host rock (HE-D) experiment: progress report. Part 1. Technical Report TR 2005-03. Mont Terri ProjectGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Benoit Garitte
    • 1
    Email author
  • Antonio Gens
    • 1
  • Jean Vaunat
    • 1
  • Gilles Armand
    • 2
  1. 1.Universidad Politecnica de Catalunya (UPC)BarcelonaSpain
  2. 2.Agence nationale pour la gestion des déchets radioactifs (ANDRA)BureFrance

Personalised recommendations