Advertisement

Rock Mechanics and Rock Engineering

, Volume 46, Issue 2, pp 269–287 | Cite as

The Brazilian Disc Test for Rock Mechanics Applications: Review and New Insights

  • Diyuan Li
  • Louis Ngai Yuen Wong
Original Paper

Abstract

The development of the Brazilian disc test for determining indirect tensile strength and its applications in rock mechanics are reviewed herein. Based on the history of research on the Brazilian test by analytical, experimental, and numerical approaches, three research stages can be identified. Most of the early studies focused on the tensile stress distribution in Brazilian disc specimens, while ignoring the tensile strain distribution. The observation of different crack initiation positions in the Brazilian disc has drawn a lot of research interest from the rock mechanics community. A simple extension strain criterion was put forward by Stacey (Int J Rock Mech Min Sci Geomech Abstr 18(6):469–474, 1981) to account for extension crack initiation and propagation in rocks, although this is not widely used. In the present study, a linear elastic numerical model is constructed to study crack initiation in a 50-mm-diameter Brazilian disc using FLAC3D. The maximum tensile stress and the maximum tensile strain are both found to occur about 5 mm away from the two loading points along the compressed diameter of the disc, instead of at the center of the disc surface. Therefore, the crack initiation point of the Brazilian test for rocks may be located near the loading point when the tensile strain meets the maximum extension strain criterion, but at the surface center when the tensile stress meets the maximum tensile strength criterion.

Keywords

Brazilian test Tensile strength Tensile strain Crack initiation Rock mechanics Review 

Notes

Acknowledgments

The authors would like to thank all the researchers who have contributed to the development of the Brazilian test on rock and rock-like materials over the past 70 years. The first author acknowledges the support of the National Natural Science Foundation of China (no. 11102239) and the 973 Program (no. 2010CB732004).

References

  1. Akazawa T (1943) New test method for evaluating internal stress due to compression of concrete: the splitting tension test. J Japan Soc Civil Eng 29:777–787Google Scholar
  2. Andreev GE (1991a) A review of the Brazilian test for rock tensile strength determination. Part I: calculation formula. Min Sci Technol 13(3):445–456. doi: 10.1016/0167-9031(91)91006-4 CrossRefGoogle Scholar
  3. Andreev GE (1991b) A review of the Brazilian test for rock tensile strength determination. Part II: contact conditions. Min Sci Technol 13(3):457–465. doi: 10.1016/0167-9031(91)91006-4 CrossRefGoogle Scholar
  4. ASTM (2008) D 3967-08: Standard test method for splitting tensile strength of intact rock core specimens. ASTM International, West Conshohocken, USAGoogle Scholar
  5. Aydin A, Basu A (2006) The use of Brazilian Test as a Quantitative Measure of Rock Weathering. Rock Mech Rock Eng 39(1):77–85. doi: 10.1007/s00603-005-0069-0 CrossRefGoogle Scholar
  6. Barla G, Innaurato N (1973) Indirect tensile testing of anisotropic rocks. Rock Mech 5(4):215–230CrossRefGoogle Scholar
  7. Bazant ZP, Kazemi MT, Hasegawa T, Mazars J (1991) Size effect in Brazilian split-cylinder tests. Measurements and fracture analysis. ACI Mater J 88(3):325–332Google Scholar
  8. Cai M, Kaiser PK (2004) Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks. Int J Rock Mech Min Sci 41 (Suppl. 1):2B 03 01-06. doi: 10.1016/j.ijrmms.2004.03.086
  9. Carneiro FLLB (1943) A new method to determine the tensile strength of concrete. In: Paper presented at the Proceedings of the 5th meeting of the Brazilian Association for Technical Rules (“Associação Brasileire de Normas Técnicas—ABNT”), 3d. sectionGoogle Scholar
  10. Chen C-S, Pan E, Amadei B (1998) Determination of deformability and tensile strength of anisotropic rock using Brazilian tests. Int J Rock Mech Min Sci 35(1):43–61. doi: 10.1016/s0148-9062(97)00329-x CrossRefGoogle Scholar
  11. Chen S, Yue ZQ, Tham LG (2004a) Digital image-based numerical modeling method for prediction of inhomogeneous rock failure. Int J Rock Mech Min Sci 41(6):939–957CrossRefGoogle Scholar
  12. Chen S, Yue ZQ, Tham LG, Lee PKK (2004b) Modeling of the indirect tensile test for inhomogeneous granite using a digital image-based numerical method. Int J Rock Mech Min Sci 41 (Suppl. 1):2B 01 01-06Google Scholar
  13. Chou Y-C, Chen C-S (2008) Determining elastic constants of transversely isotropic rocks using Brazilian test and iterative procedure. Int J Numer Anal Meth Geomech 32(3):219–234. doi: 10.1002/nag.619 CrossRefGoogle Scholar
  14. Christensen NI (1996) Poisson’s ratio and crustal seismology. J Geophys Res 101(B2):3139–3156. doi: 10.1029/95jb03446 CrossRefGoogle Scholar
  15. Claesson J, Bohloli B (2002) Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution. Int J Rock Mech Min Sci 39(8):991–1004. doi: 10.1016/s1365-1609(02)00099-0 CrossRefGoogle Scholar
  16. Colback PSB (1966) An analysis of brittle fracture initiation and propagation in the Brazilian test. In: Paper presented at the Proceedings of the First Congress International Society of Rock Mechanics, Lisbon, PortugalGoogle Scholar
  17. Coviello A, Lagioia R, Nova R (2005) On the measurement of the tensile strength of soft rocks. Rock Mech Rock Eng 38(4):251–273. doi: 10.1007/s00603-005-0054-7 CrossRefGoogle Scholar
  18. Dorogoy A, Banks-Sills L (2005) Effect of crack face contact and friction on Brazilian disk specimens—a finite difference solution. Eng Fract Mech 72(18):2758–2773. doi: 10.1016/j.engfracmech.2005.05.005 CrossRefGoogle Scholar
  19. Efimov VP (2009) The rock strength in different tension conditions. J Min Sci 45(6):569–575. doi: 10.1007/s10913-009-0071-0 CrossRefGoogle Scholar
  20. Erarslan N, Williams DJ (2011) Investigating the effect of cyclic loading on the indirect tensile strength of rocks. Rock Mech Rock Eng. doi: 10.1007/s00603-011-0209-7 Google Scholar
  21. Erarslan N, Williams DJ (2012) Experimental, numerical and analytical studies on tensile strength of rocks. Int J Rock Mech Min Sci 49(1):21–30. doi: 10.1016/j.ijrmms.2011.11.007 Google Scholar
  22. Erarslan N, Liang ZZ, Williams DJ (2011) Experimental and numerical studies on determination of indirect tensile strength of rocks. Rock Mech Rock Eng. doi: 10.1007/s00603-011-0205-y Google Scholar
  23. Exadaktylos GE, Kaklis KN (2001) Applications of an explicit solution for the transversely isotropic circular disc compressed diametrically. Int J Rock Mech Min Sci 38(2):227–243. doi: 10.1016/s1365-1609(00)00072-1 CrossRefGoogle Scholar
  24. Fairbairn E, Ulm F (2002) A tribute to Fernando L. L. B. Carneiro (1913–2001) engineer and scientist who invented the Brazilian test. Mater Struct 35(3):195–196. doi: 10.1007/bf02533589 CrossRefGoogle Scholar
  25. Fairhurst C (1964) On the validity of the ‘Brazilian’ test for brittle materials. Int J Rock Mech Min Sci Geomech Abstr 1(4):535–546. doi: 10.1016/0148-9062(64)90060-9 CrossRefGoogle Scholar
  26. Fuenkajorn K, Klanphumeesri S (2011) Laboratory determination of direct tensile strength and deformability of intact rocks. Geotech Test J 34(1):1–6. doi:  10.1520/GTJ103134
  27. Gong F, Li X, Zhao J (2010) Analytical algorithm to estimate tensile modulus in Brazilian disk splitting tests. Yanshilixue Yu Gongcheng Xuebao/Chin J Rock Mech Eng 29(5):881–891 (in Chinese)Google Scholar
  28. Goodman RE (1989) Introduction to rock mechanics, 2nd edn. Wiley, New YorkGoogle Scholar
  29. Guo H, Aziz NI, Schmidt LC (1993) Rock fracture-toughness determination by the Brazilian test. Eng Geol 33(3):177–188. doi: 10.1016/0013-7952(93)90056-i CrossRefGoogle Scholar
  30. Hawkes I, Mellor M (1970) Uniaxial testing in rock mechanics laboratories. Eng Geol 4(3):179–285. doi: 10.1016/0013-7952(70)90034-7 CrossRefGoogle Scholar
  31. Hiramatsu Y, Oka Y (1966) Determination of the tensile strength of rock by a compression test of an irregular test piece. Int J Rock Mech Min Sci Geomech Abstr 3(2):89–90. doi: 10.1016/0148-9062(66)90002-7 CrossRefGoogle Scholar
  32. Hobbs DW (1964) The tensile strength of rocks. Int J Rock Mech Min Sci Geomech Abstr 1(3):385–396. doi: 10.1016/0148-9062(64)90005-1 CrossRefGoogle Scholar
  33. Hobbs DW (1965) An assessment of a technique for determining the tensile strength of rock. Br J Appl Phys 16(2):259–268CrossRefGoogle Scholar
  34. Hobbs DW (1967) Rock tensile strength and its relationship to a number of alternative measures of rock strength. Int J Rock Mech Min Sci Geomech Abstr 4(1):115–127. doi: 10.1016/0148-9062(67)90009-5 CrossRefGoogle Scholar
  35. Hondros G (1959) The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete. Aust J Appl Sci 10(3):243–268Google Scholar
  36. Hooper JA (1971) The failure of glass cylinders in diametral compression. J Mech Phys Solids 19(4):179–200CrossRefGoogle Scholar
  37. Hudson JA (1969) Tensile strength and the ring test. Int J Rock Mech Min Sci Geomech Abstr 6(1):91–97. doi: 10.1016/0148-9062(69)90029-1 CrossRefGoogle Scholar
  38. Hudson JA, Brown ET, Rummel F (1972) The controlled failure of rock discs and rings loaded in diametral compression. Int J Rock Mech Min Sci Geomech Abstr 9(2):241–248. doi: 10.1016/0148-9062(72)90025-3 CrossRefGoogle Scholar
  39. ISRM (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr 15(3):99–103. doi: 10.1016/0148-9062(78)90003-7 CrossRefGoogle Scholar
  40. Itasca Consulting Group, Inc. (2006) FLAC3D—Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 3.1 User’s Manual. Minneapolis, Minnesota, USAGoogle Scholar
  41. Jaeger JC (1967) Failure of rocks under tensile conditions. Int J Rock Mech Min Sci Geomech Abstr 4(2):219–227. doi: 10.1016/0148-9062(67)90046-0 CrossRefGoogle Scholar
  42. Jaeger JC, Hoskins ER (1966a) Rock failure under confined Brazilian test. J Geophys Res 71(10):2651–2659CrossRefGoogle Scholar
  43. Jaeger JC, Hoskins ER (1966b) Stresses and failure in rings of rock loaded in diametral tension or compression. Br J Appl Phys 17(5):685–692CrossRefGoogle Scholar
  44. Lajtai EZ (1980) Tensile strength and its anisotropy measured by point and line-loading of sandstone. Eng Geol 15(3–4):163–171. doi: 10.1016/0013-7952(80)90032-0 CrossRefGoogle Scholar
  45. Lanaro F, Sato T, Stephansson O (2009) Microcrack modelling of Brazilian tensile tests with the boundary element method. Int J Rock Mech Min Sci 46(3):450–461. doi: 10.1016/j.ijrmms.2008.11.007 CrossRefGoogle Scholar
  46. Lavrov A, Vervoort A (2002) Theoretical treatment of tangential loading effects on the Brazilian test stress distribution. Int J Rock Mech Min Sci 39(2):275–283. doi: 10.1016/s1365-1609(02)00010-2 CrossRefGoogle Scholar
  47. Lavrov A, Vervoort A, Wevers M, Napier JAL (2002) Experimental and numerical study of the Kaiser effect in cyclic Brazilian tests with disk rotation. Int J Rock Mech Min Sci 39(3):287–302. doi: 10.1016/s1365-1609(02)00038-2 CrossRefGoogle Scholar
  48. Li D, Li X, Li CC (2010) Experimental studies of mechanical properties of two rocks under direct compression and tension. Yanshilixue Yu Gongcheng Xuebao/Chin J Rock Mech Eng 29(3):624–632 (in Chinese)Google Scholar
  49. Li D, Li C, Li X (2011) Influence of sample height-to-width ratios on failure mode for rectangular prism samples of hard rock loaded in uniaxial compression. Rock Mech Rock Eng 44(3):253–267. doi: 10.1007/s00603-010-0127-0 CrossRefGoogle Scholar
  50. Malan DF, Napier JAL, Watson BP (1994) Propagation of fractures from an interface in a Brazilian test specimen. Int J Rock Mech Min Sci Geomech Abstr 31(6):581–596. doi: 10.1016/0148-9062(94)90002-7 CrossRefGoogle Scholar
  51. Markides CF, Kourkoulis SK (2012) The stress field in a standardized brazilian disc: the influence of the loading type acting on the actual contact length. Rock Mech Rock Eng 45(2):145–158. doi: 10.1007/s00603-011-0201-2 CrossRefGoogle Scholar
  52. Markides CF, Pazis DN, Kourkoulis SK (2010) Closed full-field solutions for stresses and displacements in the Brazilian disk under distributed radial load. Int J Rock Mech Min Sci 47(2):227–237. doi: 10.1016/j.ijrmms.2009.11.006 CrossRefGoogle Scholar
  53. Markides CF, Pazis DN, Kourkoulis SK (2011) Influence of friction on the stress field of the Brazilian tensile test. Rock Mech Rock Eng 44(1):113–119. doi: 10.1007/s00603-010-0115-4 CrossRefGoogle Scholar
  54. Markides CF, Pazis DN, Kourkoulis SK (2012) The Brazilian disc under non-uniform distribution of radial pressure and friction. Int J Rock Mech Min Sci 50(1):47–55. doi: 10.1016/j.ijrmms.2011.12.012 Google Scholar
  55. Mellor M, Hawkes I (1971) Measurement of tensile strength by diametral compression of discs and annuli. Eng Geol 5(3):173–225. doi: 10.1016/0013-7952(71)90001-9 CrossRefGoogle Scholar
  56. Newman DA, Bennett DG (1990) The effect of specimen size and stress rate for the Brazilian test—a statistical analysis. Rock Mech Rock Eng 23(2):123–134. doi: 10.1007/bf01020397 CrossRefGoogle Scholar
  57. Nova R, Zaninetti A (1990) An investigation into the tensile behaviour of a schistose rock. Int J Rock Mech Min Sci Geomech Abstr 27(4):231–242. doi: 10.1016/0148-9062(90)90526-8 Google Scholar
  58. Okubo S, Fukui K (1996) Complete stress-strain curves for various rock types in uniaxial tension. Int J Rock Mech Min Sci Geomech Abstr 33(6):549–556. doi: 10.1016/0148-9062(96)00024-1 CrossRefGoogle Scholar
  59. Pandey P, Singh DP (1986) Deformation of a rock in different tensile tests. Eng Geol 22(3):281–292. doi: 10.1016/0013-7952(86)90029-3 CrossRefGoogle Scholar
  60. Peng SS (1976) Stress analysis of cylindrical rock discs subjected to axial double point load. Int J Rock Mech Min Sci Geomech Abstr 13(3):97–101. doi: 10.1016/0148-9062(76)90426-5 CrossRefGoogle Scholar
  61. Rocco C, Guinea GV, Planas J, Elices M (1999a) Size effect and boundary conditions in the Brazilian test: Experimental verification. Mater Struct/Materiaux et Constructions 32(3):210–217Google Scholar
  62. Rocco C, Guinea GV, Planas J, Elices M (1999b) Size effect and boundary conditions in the Brazilian test: theoretical analysis. Mater Struct/Materiaux et Constructions 32(6):437–444Google Scholar
  63. Satoh Y (1987) Position and load of failure in Brazilian test; a numerical analysis by Griffith criterion. J Soc Mater Sci Japan 36(410):1219–1224CrossRefGoogle Scholar
  64. Stacey TR (1981) A simple extension strain criterion for fracture of brittle rock. Int J Rock Mech Min Sci Geomech Abstr 18(6):469–474. doi: 10.1016/0148-9062(81)90511-8 CrossRefGoogle Scholar
  65. Sundaram PN, Corrales JM (1980) Brazilian tensile strength of rocks with different elastic properties in tension and compression. Int J Rock Mech Min Sci Geomech Abstr 17(2):131–133. doi: 10.1016/0148-9062(80)90265-x CrossRefGoogle Scholar
  66. Swab JJ, Yu J, Gamble R, Kilczewski S (2011) Analysis of the diametral compression method for determining the tensile strength of transparent magnesium aluminate spinel. Int J Fract. doi: 10.1007/s10704-011-9655-1 Google Scholar
  67. Tavallali A, Vervoort A (2010a) Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions. Int J Rock Mech Min Sci 47(2):313–322. doi: 10.1016/j.ijrmms.2010.01.001 CrossRefGoogle Scholar
  68. Tavallali A, Vervoort A (2010b) Failure of layered sandstone under Brazilian test conditions: effect of micro-scale parameters on macro-scale behaviour. Rock Mech Rock Eng 43(5):641–653. doi: 10.1007/s00603-010-0084-7 CrossRefGoogle Scholar
  69. Van De Steen B, Vervoort A, Napier JAL (2005) Observed and simulated fracture pattern in diametrically loaded discs of rock material. Int J Fract 131(1):35–52CrossRefGoogle Scholar
  70. Vutukuri VS (1974) The effect of liquids on the tensile strength of limestone. Int J Rock Mech Min Sci Geomech Abstr 11(1):27–29. doi: 10.1016/0148-9062(74)92202-5 CrossRefGoogle Scholar
  71. Wang QZ, Jia XM, Kou SQ, Zhang ZX, Lindqvist PA (2004) The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results. Int J Rock Mech Min Sci 41(2):245–253. doi: 10.1016/s1365-1609(03)00093-5 CrossRefGoogle Scholar
  72. Wijk G (1978) Some new theoretical aspects of indirect measurements of the tensile strength of rocks. Int J Rock Mech Min Sci Geomech Abstr 15(4):149–160. doi: 10.1016/0148-9062(78)91221-4 CrossRefGoogle Scholar
  73. Xu G, Chen F, Xiao JQ (2006) Influence of load contact condition on rock tensile strength. Yanshilixue Yu Gongcheng Xuebao/Chin J Rock Mech Eng 25(1):168–173 (in Chinese)Google Scholar
  74. Yanagidani T, Sano O, Terada M, Ito I (1978) The observation of cracks propagating in diametrically-compressed rock discs. Int J Rock Mech Min Sci Geomech Abstr 15(5):225–235. doi: 10.1016/0148-9062(78)90955-5 CrossRefGoogle Scholar
  75. Ye J, Wu FQ, Sun JZ (2009) Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads. Int J Rock Mech Min Sci 46(3):568–576. doi: 10.1016/j.ijrmms.2008.08.004 CrossRefGoogle Scholar
  76. Yu Y (2005) Questioning the validity of the Brazilian test for determining tensile strength of rocks. Yanshilixue Yu Gongcheng Xuebao/Chin J Rock Mech Eng 24(7):1150–1157 (in Chinese)Google Scholar
  77. Yu Y, Meng C (2005) 3-D distribution of tensile stress in rock specimens for the Brazilian test. J Univ Sci Technol Beijing Miner Metall Mater (Eng Ed) 12(6):495–499. doi: 10.1111/j.1524-4733.2005.00041.x Google Scholar
  78. Yu Y, Yin J, Zhong Z (2006) Shape effects in the Brazilian tensile strength test and a 3D FEM correction. Int J Rock Mech Min Sci 43(4):623–627. doi: 10.1016/j.ijrmms.2005.09.005 CrossRefGoogle Scholar
  79. Yu Y, Zhang J, Zhang J (2009) A modified Brazilian disk tension test. Int J Rock Mech Min Sci 46(2):421–425. doi: 10.1016/j.ijrmms.2008.04.008 CrossRefGoogle Scholar
  80. Yue ZQ, Chen S, Tham LG (2003) Finite element modeling of geomaterials using digital image processing. Comput Geotech 30(5):375–397CrossRefGoogle Scholar
  81. Zhu WC, Tang CA (2006) Numerical simulation of Brazilian disk rock failure under static and dynamic loading. Int J Rock Mech Min Sci 43(2):236–252. doi: 10.1016/j.ijrmms.2005.06.008 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of Resources and Safety EngineeringCentral South UniversityChangshaChina
  2. 2.School of Civil and Environmental EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations