Rock Mechanics and Rock Engineering

, Volume 45, Issue 4, pp 445–459 | Cite as

Piezonuclear Fission Reactions in Rocks: Evidences from Microchemical Analysis, Neutron Emission, and Geological Transformation

  • A. Carpinteri
  • G. Lacidogna
  • A. Manuello
  • O. Borla
Original Paper


Neutron emission measurements, by means of He3 devices and bubble detectors, were performed during three different kinds of compression tests on brittle rocks: (1) under monotonic displacement control, (2) under cyclic loading, and (3) by ultrasonic vibration. The material used for the tests was Luserna Stone. Since the analyzed material contains iron, our conjecture is that piezonuclear reactions involving fission of iron into aluminum, or into magnesium and silicon, should have occurred during compression damage and failure. This hypothesis is confirmed by the direct evidence of energy dispersive X-ray spectroscopy tests conducted on Luserna Stone specimens. It is also interesting to emphasize that the anomalous chemical balances of the major events that have affected the geomechanical and geochemical evolution of the Earth’s crust should be considered as an indirect evidence of the piezonuclear fission reactions considered above.


Neutron emission Piezonuclear reactions Rocks crushing failure Energy dispersive X-ray spectroscopy Plate tectonics Element evolution 



The financial support provided by the Regione Piemonte (Italy) RE-FRESCOS Project is gratefully acknowledged. Special thanks are due to R. Sandrone and A. Chiodoni of the Politecnico di Torino for their kind collaboration in the EDS analysis. The authors wish to thank also D. Madonna Ripa and A. Troia from the National Research Institute of Metrology—INRIM, for their indispensable assistance during the ultrasonic tests.


  1. Aki K (1983) Strong motion seismology. In: Kanamori H and Boschi E (eds.) Earthquakes: observation, theory and interpretation, North-Holland Pub. Co., AmsterdamGoogle Scholar
  2. Anbar AD (2008) Elements and evolution. Science 322:1481–1482CrossRefGoogle Scholar
  3. Basile-Doelsch I (2006) Si stable isotope in the Earth’s surface: a review. J Geochem Expl 88:252–256CrossRefGoogle Scholar
  4. Basile-Doelsch I, Meunier JD, Parron C (2005) Another continental pool in the terrestrial silicon cycle. Nature 433:399–402CrossRefGoogle Scholar
  5. Bubble Technology Industries (1992) Instruction manual for the Bubble detector, Copyright Bubble Technology Industries, Chalk River, OntarioGoogle Scholar
  6. Canfiled DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453CrossRefGoogle Scholar
  7. Cardone F, Mignani R (2004) Energy and geometry, Chap. 10. World Scientific, SingaporeGoogle Scholar
  8. Cardone F, Mignani R (2006) Piezonuclear reactions and Lorentz invariance breakdown. Int J Mod Phys E Nucl Phys 15:911–924CrossRefGoogle Scholar
  9. Cardone F, Mignani R (2007) Deformed spacetime, Chaps. 16–17. Springer, DordrechtGoogle Scholar
  10. Cardone F, Carpinteri A, Lacidogna G (2009a) Piezonuclear neutrons from fracturing of inert solids. Phys Lett A 373:4158–4163CrossRefGoogle Scholar
  11. Cardone F, Cherubini G, Petrucci A (2009b) Piezonuclear neutrons. Phys Lett A 373:862–866CrossRefGoogle Scholar
  12. Carpinteri A (1989) Cusp catastrophe interpretation of fracture instability. J Mech Phys Solid 37:567–582CrossRefGoogle Scholar
  13. Carpinteri A (1990) A catastrophe theory approach to fracture mechanics. Int J Fract 44:57–69CrossRefGoogle Scholar
  14. Carpinteri A, Manuello A (2010) Geomechanical and geochemical evidence of piezonuclear fission reactions in the Earth’s crust. Strain. doi: 10.1111/j.1475-1305.2010.00766.x
  15. Carpinteri A, Cardone F, Lacidogna G (2009) Piezonuclear neutrons from brittle fracture: early results of mechanical compression tests. Strain 45:332–339. Presented at the Turin Academy of Sciences on December 10, 2008. Proc of the Turin Academy of Sciences, Ser. V, 2010 33, 27–42Google Scholar
  16. Carpinteri A, Cardone F, Lacidogna G (2010a) Energy emissions from failure phenomena: mechanical, electromagnetic, nuclear. Exp Mech 50:1235–1243CrossRefGoogle Scholar
  17. Carpinteri A, Borla O, Lacidogna G, Manuello A (2010b) Neutron emissions in brittle rocks during compression tests: monotonic vs cyclic loading. Phys Mesomech 13:268–274CrossRefGoogle Scholar
  18. Carpinteri A, Chiodoni A, Manuello A, Sandrone R (2010c) Compositional and microchemical evidence of piezonuclear fission reactions in rock specimens subjected to compression tests. Strain. doi: 10.1111/j.1475-1305.2010.00767.x
  19. Carpinteri A, Lacidogna G, Manuello A and Borla O (2011) Energy emissions from brittle fracture: neutron measurements and geological evidences of piezonuclear reactions. Strenght Fract Complex. doi: 10.3233/SFC-2011-0120
  20. Catling CD, Zahnle KJ (2009) The planetary air leak. Sci Am 300(5):24–31CrossRefGoogle Scholar
  21. Compagnoni R, Crisci GM, Sandrone R (1983) Caratterizzazione chimica e petrografica degli‘‘gneiss di Luserna’’ (Massiccio cristallino Dora-Maira, Alpi Occidentali) Rend. Soc It Min Petr 38:498Google Scholar
  22. Condie KC (1976) Plate Tectonics and crustal evolution. Pergamon Press, New YorkGoogle Scholar
  23. De la Rocha CL, Brzezinski M, De Niro MJ (2000) A first look at the distribution of the stable isotopes of silicon in natural waters. Geochim et Cosmochim Acta 64(14):2467–2477CrossRefGoogle Scholar
  24. Doglioni C (2007) Interno della Terra, Treccani. Enciclopedia Scienza e Tecnica 595–605Google Scholar
  25. Egami F (1975) Minor elements and evolution. J Mol Evol 4(2):113–120CrossRefGoogle Scholar
  26. Favero G, Jobstraibizer P (1996) The distribution of aluminum in the Earth: from cosmogenesis to Sial evolution. Coord Chem Rev 149:400–467Google Scholar
  27. Foing B (2005) Earth’s childhood attic. Astrobiological Magazine: Retrospection (on-line)Google Scholar
  28. Fowler CMR (2005) The solid Earth: an introduction to global geophysics. Cambridge University Press, CambridgeGoogle Scholar
  29. Galimov EM (2005) Redox evolution of the Earth caused by a multistage formation of its core. Earth Planet Sci Lett 233:263–276CrossRefGoogle Scholar
  30. Hazen et al (2008) Mineral evolution. Am Miner 93:1693–1720Google Scholar
  31. Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc London Ser B 361:903–915CrossRefGoogle Scholar
  32. Key Iron Deposits of the World. Available at; last accessed October (2009)
  33. Kholodov VN, Butuzova GY (2008) Siderite formation and evolution on sedimentary iron ore deposition in the Earth’s history. Geol Ore Depos 50(4):299–319CrossRefGoogle Scholar
  34. Konhauser KO et al (2009) Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458:750–754Google Scholar
  35. Kuzhevskij BM, Nechaev YO, Sigaeva EA, Zakharov VA (2003a) Neutron flux variations near the Earth’s crust. A possible tectonic activity detection. Nat Hazards Earth Sys Sci 3:637–645CrossRefGoogle Scholar
  36. Kuzhevskij BM, Nechaev YO, Sigaeva EA (2003b) Distribution of neutrons near the Earth’s surface. Nat Hazards Earth Sys Sci 3:255–262CrossRefGoogle Scholar
  37. Liu L (2007) The inception of the oceans and CO2-atmosphere in the early history of the Earth. Earth Planet Sci Lett 227:179–184CrossRefGoogle Scholar
  38. Lunine EJI (1998) Earth: evolution of a habitable world. Cambridge University Press, MelbourneGoogle Scholar
  39. National Council on Radiation Protection and Measurements (1971) Protection Against Neutron Radiation, NCRP Report 38Google Scholar
  40. Natl Academy of Sciences (1975) Medical and biological effects of environmental pollutants: Nickel. Proc Natl Acad Sci, Washington D.C.Google Scholar
  41. Padron E, Melian G, Marrero R, Nolasco D, Barrancos J, Padilla G, Hernandez PA, Perez NM (2008) Changes in the diffuse CO2 emission and relation to seismic activity in and around El Hierro, Canary Islands. Pure Appl Geophys 165:95–114CrossRefGoogle Scholar
  42. Ragueneau O et al (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global Planet Change 26:317–365CrossRefGoogle Scholar
  43. Roy I, Sarkar BC, Chattopadhyay A (2001) MINFO-a prototype mineral information database for iron ore resourcers of India. Comp Geosci 27:357–361CrossRefGoogle Scholar
  44. Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33(3):267–309CrossRefGoogle Scholar
  45. Saito MA (2009) Less nickel for more oxygen. Nature 458:714–715CrossRefGoogle Scholar
  46. Sandrone R, Cadoppi P, Sacchi R, Vialon P (1993) The Dora-Maira Massif. In: Von Raumer JF, Neubauer F (eds) Pre-Mesozoic geology in the Alps. Springer, Berlin, pp 317–325CrossRefGoogle Scholar
  47. Sandrone R, Colombo A, Fiora L, Fornaro M, Lovera E, Tunesi A, Cavallo A (2004) Contemporary natural stones from the Italian western Alps (Piedmont and Aosta Valley regions). Period Miner (Special issue) 73:211–226Google Scholar
  48. Sigman D, Jaccard S, Hau F (2004) Polar ocean stratification in a cold climate. Nature 428:59–63CrossRefGoogle Scholar
  49. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33(2):241–265CrossRefGoogle Scholar
  50. Taylor SR, McLennan SM (2009) Planetary crusts: their composition, origin and evolution. Cambridge University Press, CambridgeGoogle Scholar
  51. Vola G, Marchi M (2010) Quantitative phase analysis (QPA) of the Luserna Stone. Period Miner 79(2):45–60Google Scholar
  52. Volodichev NN, Kuzhevskij BM, Nechaev OYu, Panasyuk MI, Podorolsky A, Shavrin PI (2000) Sun–Moon–Earth connections: the neutron intensity splashes and seismic activity. Astrons Vestnik 34(2):188–190Google Scholar
  53. World Iron Ore producers. Available at; last accessed October (2009)
  54. World Mineral Resources Map. Available at; last accessed October (2009)
  55. Yamaguchi KE (2005) Evolution of the geochemical cycle of Fe trough geological time: Iron isotope perspective. Frontier Res Earth Evol 2:4–24Google Scholar
  56. Yaroshevsky AA (2006) Abundances of chemical elements in the Earth’s crust. Geochem Int 44(1):54–62CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • A. Carpinteri
    • 1
  • G. Lacidogna
    • 1
  • A. Manuello
    • 1
  • O. Borla
    • 1
    • 2
  1. 1.Department of Structural Engineering and GeotechnicsPolitecnico di TorinoTurinItaly
  2. 2.Istituto Nazionale di Fisica NucleareTurinItaly

Personalised recommendations