Stress dependent thermal pressurization of a fluid-saturated rock

  • S. Ghabezloo
  • J. Sulem


Temperature increase in saturated porous materials under undrained conditions leads to thermal pressurization of the pore fluid due to the discrepancy between the thermal expansion coefficients of the pore fluid and of the solid matrix. This increase in the pore fluid pressure induces a reduction of the effective mean stress and can lead to shear failure or hydraulic fracturing. The equations governing the phenomenon of thermal pressurization are presented and this phenomenon is studied experimentally for a saturated granular rock in an undrained heating test under constant isotropic stress. Careful analysis of the effect of mechanical and thermal deformations of the drainage and pressure measurement system is performed and a correction of the measured pore pressure is introduced. The test results are modelled using a non-linear thermo-poro-elastic constitutive model of the granular rock with emphasis on the stress-dependent character of the rock compressibility. The effects of stress and temperature on thermal pressurization observed in the test are correctly reproduced by the model.

Keywords: Granular rock; thermal pressurization; pore pressure; thermo-poro-elasticity 


  1. Bass JD (1995) Elasticity of minerals, glasses, and melts. In: Thomas JA (ed) Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union Online Reference Shelf 2, pp 45–63Google Scholar
  2. Berryman J (1995) Mixture theories for rock properties. In: Thomas JA (ed) Rock physics and phase relations: a handbook of physical constants. American Geophysical Union Online Reference Shelf 3, pp 205–228Google Scholar
  3. Berryman, JG 1992Effective stress for transport properties of inhomogeneous porous rockJ Geophys Res971740917424CrossRefGoogle Scholar
  4. Bishop, AW 1973The influence of an undrained change in stress on the pore pressure in porous media of low compressibilityGéotechnique23435442Google Scholar
  5. Bishop, AW 1976The influence of system compressibility on the observed pore pressure response to an undrained change in stress in saturated rockGéotechnique26371375Google Scholar
  6. Bishop, AW, Eldin, AKG 1950Undrained triaxial tests on saturated sands and their significance in the general theory of shear strengthGéotechnique21332Google Scholar
  7. Boutéca MJ, Bary D, Piau JM, Kessler N, Boisson M, Fourmaintraux D (1994) Contribution of poroelasticity to reservoir engineering: lab experiments, application to core decompression and implication in HP-HT reservoirs depletion. Proceedings of the Eurock’94, Delft, Balkema, Rotterdam, Paper SPE/ISRM 28093Google Scholar
  8. Campanella, RG, Mitchell, JK 1968Influence of temperature variations on soil behaviourJnl Soil Mech Fdn Div Am Soc Civ Engrs94709734Google Scholar
  9. Coussy O (2004) Poromechanics. John Wiley & SonsGoogle Scholar
  10. Detournay E, Cheng AH-D (1993) Fundamentals of Poroelasticity, Chap. 5. In: Fairhurst C (ed) Comprehensive rock engineering: principles, practice and projects, Vol. II. Analysis and design method, Pergamon, pp 113–171Google Scholar
  11. Dormieux, L, Molinari, A, Kondo, D 2002Micromechanical approach to the behavior of poroelastic materialsJ Mech Phys Solids5022032231CrossRefGoogle Scholar
  12. Dropek, RK, Johnson, JN, Walsh, JB 1978The influence of pore pressure on the mechanical properties of Kayenta sandstoneJ Geophys Res8328172824CrossRefGoogle Scholar
  13. Fei Y (1995) Thermal expansion. In: Thomas JA (ed) Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union Online Reference Shelf 2, pp 29–44Google Scholar
  14. Fortin, J, Schubnel, A, Gueguen, Y 2005Elastic wave velocities and permeability evolution during compaction of Bleurswiller sandstoneInt J Rock Mech Min42873889CrossRefGoogle Scholar
  15. Gurevich, B 2004A simple derivation of the effective stress coefficient for seismic velocities in porous rocksGeophysics69393397CrossRefGoogle Scholar
  16. Hill, R 1952The elastic behavior of crystalline aggregateProc Physical Soc LondonA65349354CrossRefGoogle Scholar
  17. Lachenbruch, AH 1980Frictional heating, fluid pressure and the resistance to fault motionJ Geophys Res8560976112CrossRefGoogle Scholar
  18. Lockner, DA, Stanchits, SA 2002Undrained poroelastic response of sandstones to deviatoric stress changeJ Geophys Res1072353CrossRefGoogle Scholar
  19. McTigue, DF 1986Thermoelastic response of fluid-saturated porous rockJ Geophys Res9195339542CrossRefGoogle Scholar
  20. Mesri, G, Adachi, K, Ulrich, CR 1976Pore-pressure response in rock to undrained change in all-around stressGéotechnique26317330CrossRefGoogle Scholar
  21. Palciauskas, VV, Domenico, PA 1982Characterization of drained and undrained response of thermally loaded repository rocksWater Resour Res18281290CrossRefGoogle Scholar
  22. Rempel, AW, Rice, JR 2006Thermal pressurization and onset of melting in fault zonesJ Geophys Res111B09314CrossRefGoogle Scholar
  23. Rice, JR 2006Heating and weakening of faults during earthquake slipJ Geophys Res111B05311CrossRefGoogle Scholar
  24. Rice, JR, Cleary, MP 1976Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituentsRev Geophys Space Phys14227240CrossRefGoogle Scholar
  25. Skempton, AW 1954The pore pressure coefficients A and BGéotechnique4143147Google Scholar
  26. Skempton, AW 1960Effective stress in soils, concrete and rocksButterworthsLondon416Google Scholar
  27. Spang B (2002) Excel Add-In for Properties of Water and Steam in SI-Units,
  28. Sulem, J, Vardoulakis, I, Papamichos, E, Oulahna, A, Tronvoll, J 1999Elasto-plastic modelling of red wildmoor sandstoneMech Cohes Frict Mat4215246Google Scholar
  29. Sulem, J, Vardoulakis, I, Ouffroukh, H, Boulon, M, Hans, J 2004Experimental characterization of the thermo-poro-mechanical properties of the Aegion fault gougeComptes Rendus Geosciences336455466CrossRefGoogle Scholar
  30. Sulem, J, Ouffroukh, H 2006Hydromechanical behaviour of fontainebleau sandstoneRock Mech Rock Eng39185213CrossRefGoogle Scholar
  31. Sulem, J, Lazar, P, Vardoulakis, I 2007Thermo-poro-mechanical properties of clayey gouge and application to rapid fault shearingInt J Num Anal Meth Geomechanics31523540CrossRefGoogle Scholar
  32. Sultan N (1997) Etude du comportement thermo-mécanique de l’argile de Boom: expériences et modélisation, PhD thesis, CERMES, Ecole Nationale des Ponts et Chaussées, FranceGoogle Scholar
  33. Vardoulakis, I 2002Dynamic thermo-poro-mechanical analysis of catastrophic landslidesGéotechnique52157171CrossRefGoogle Scholar
  34. Walsh, JB 1973Theoretical bounds for thermal expansion, specific heat and strain energy due to internal stressesJ Geophys Res7876367647Google Scholar
  35. Wissa, AEZ 1969Pore pressure measurement in saturated stiff soilsJnl Soil Mech Fdn Div Am Soc Civ Engrs9510631073Google Scholar
  36. Zaoui A (2000) Matériaux hétérogènes et composites, Ecole PolytechniqueGoogle Scholar
  37. Zimmerman, RW 1991Compressibility of sandstonesElsevierAmsterdamGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Université Paris-Est, Ecole Nationale des Ponts et Chaussées, CERMES-UR NavierMarne la ValléeFrance

Personalised recommendations