Brittle Rock Failure in the Steg Lateral Adit of the Lötschberg Base Tunnel

  • F. Rojat
  • V. Labiouse
  • P. K. Kaiser
  • F. Descoeudres
Original Paper


During the crossing of brittle rock formations at the Lötschberg base tunnel, failure phenomena have been observed both at the tunnel face and at the walls. A detailed analysis has been undertaken to explain these behaviours, based on the recent developments of Canadian research on brittle failure mechanisms. At the tunnel walls, a very good agreement is found between the calculated and observed damage and between two prediction methods, i.e. a semi-empirical failure criterion and elastic calculations with the “brittle Hoek-Brown parameters.” Near the face, due to the 3D nature of the stress conditions, some limitations of these approaches have been highlighted, and the growth of wall failure has been analysed. This research allowed a better understanding of the brittle rock mass behaviour at the Lötschberg base tunnel and showed that brittle failure processes dominate the behaviour of deep, highly stressed excavations in massive to moderately jointed rock. It also illustrates where improvements to the adopted approaches are required.

Keywords: Tunnel, Lötschberg, Brittle failure, Brittle Hoek-Brown parameters, High stress, Brittle rock 


  1. Barton N (1994) A Q-system case record of cavern design in faulted rock. In: Tunnelling in difficult ground, Torino, Italy, 8 ppGoogle Scholar
  2. Diederichs MS, Kaiser PK, Martin CD (2000) The use of discrete element simulation to illuminate brittle rock failure process. In: Proceedings of the 53rd Canadian Geotechnical Conference, Montreal, Canada, p 447–454Google Scholar
  3. Diederichs, MS, Kaiser, PK, Eberhardt, E 2004Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotationInt J Rock Mech Mining Sci41785812CrossRefGoogle Scholar
  4. Eberhardt, E 2001Numerical modelling of three-dimension stress rotation ahead of an advancing tunnel faceInt J Rock Mech Mining Sci38499518CrossRefGoogle Scholar
  5. Griffith, AA 1924Theory of ruptureProceedings of the 1st international congress applied mechanicsDelftThe Netherlands5563Google Scholar
  6. Hajiabdolmajid, VR, Kaiser, PK, Martin, CD 2002Modelling brittle failure of rockInt J Rock Mech Mining Sci39731741CrossRefGoogle Scholar
  7. Hajiabdolmajid, VR, Kaiser, PK, Martin, CD 2003Mobilised strength components in brittle failure of rockGeotechnique53327336CrossRefGoogle Scholar
  8. Horii, H, Nemat-Nasser, S 1985Compression-induced microcrack growth in brittle solids: axial splitting and shear failureJ Geophys Res9031053125CrossRefGoogle Scholar
  9. IGWS (1995) Décompressions violentes: évaluation des zones à risques. Report RA14 for BLS AlpTransit AG Lötschberg Basislinie, 155 ppGoogle Scholar
  10. Kaiser, PK 2002Lötschberg tunnel: rockburst hazard assessment—contribution to project R487MIRARCO, Laurentian UniversityCanada22Google Scholar
  11. Kaiser PK (2005) Tunnel stability in highly stressed, brittle ground—rock mechanics considerations for Alpine tunnelling. In: Keynote lecture, Geological AlpTransit Symposium (GEAT’05), Zürich, Switzerland, 20 ppGoogle Scholar
  12. Kaiser PK (2006) Rock mechanics consideration for construction of deep tunnel in brittle ground. In: Keynote lecture, Asian Rock Mechanics Symposium, Singapore, 12 ppGoogle Scholar
  13. Kaiser, PK, McCreath, DR, Tannant, DD 1996Canadian rockburst support handbookMining Research DirectorateSudbury, Canada314Google Scholar
  14. Kaiser, PK, Diederichs, MS, Martin, CD, Sharp, J, Steiner, W 2000Underground works in hard rock tunnelling and miningKeynote lecture at GeoEng2000, MelbourneAustralia Technomic Publishing Co.Melbourne, Australia841926Google Scholar
  15. Martin, CD 1997Seventeenth Canadian Geotechnical Colloquium: the effect of cohesion loss and stress path on brittle rock strengthCan Geotech J34698725CrossRefGoogle Scholar
  16. Martin, CD, Stimpson, B 1994The effect of sample disturbance on laboratory properties of Lac du Bonnet graniteCan Geotech J31692702CrossRefGoogle Scholar
  17. Martin, CD, Kaiser, PK, McCreath, DR 1999Hoek-Brown parameters for predicting the depth of brittle failure around tunnelsCan Geotech J36136151CrossRefGoogle Scholar
  18. Martin, CD, Kaiser, PK, Christiansson, R 2003Stress, instability and design of underground excavationsInt J Rock Mech Mining Sci4010271047CrossRefGoogle Scholar
  19. Müller B, Reinecker J, Heidbach O, Fuchs K (2004) The 2004 release of the world stress map. Available online at:
  20. Rojat F, Labiouse V, Descoeudres F, Kaiser PK (2002) Brittle rock failure at the Loetschberg, Steg sector (AlpTransit tunnel). Project R487. Rock Mechanics Laboratory of EPFL, LausanneGoogle Scholar
  21. Switzerland Z_Soil v5.71 (2002) User’s manual. ZACE, Lausanne, SwitzerlandGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • F. Rojat
    • 1
    • 2
  • V. Labiouse
    • 1
  • P. K. Kaiser
    • 3
  • F. Descoeudres
    • 1
  1. 1.Laboratoire de Mécanique des RochesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Laboratoire Régional des Ponts et ChausséesToulouseFrance
  3. 3.MIRARCO—Mining Innovation, Chair for Rock Mechanics and Ground ControlLaurentian UniversitySudburyCanada

Personalised recommendations