The Mechanical Behaviour of Clay Shales and Implications on the Design of Tunnels

  • M. Bonini
  • D. Debernardi
  • M. Barla
  • G. Barla


This paper is a contribution to the study of tunnelling in difficult conditions, with attention paid to large time-dependent deformations, which may develop either during construction, causing instabilities of the tunnel heading and of the face, or during the service life of the tunnel. Under these circumstances the construction costs may rise due to the delays in excavation time, the stabilisation and heavy support measures that need be adopted. Following a review of characterisation and modelling of time-dependent behaviour in rock, the mechanical behaviour of Clay Shales (CS), a structurally complex formation of the Apennines (Italy), is described. Then, the key factors involved in the selection of the constitutive model for CS are identified. Two constitutive models are selected and discussed and their specific material parameters determined. A case study of a large size tunnel is presented where numerical modelling by the finite difference method is carried out. The results of modelling are compared with the monitoring data in terms of radial convergence of the tunnel and extrusion of the tunnel face.

Keywords: Constitutive laws, numerical modelling, clay shales, time-dependent behaviour, tunnelling 


  1. A.G.I. (1979): Some Italian experiences on the mechanical characterization of structurally complex formations. In: Proc. 4th Int. Congr. on Rock Mechanics, Montreux, France.Google Scholar
  2. Alonso, E. E., Vaunat, J., Gens, A. 1999Modelling the mechanical behaviour of expansive claysEng. Geol.54173183CrossRefGoogle Scholar
  3. Anagnostou, G. (1991): Untersuchungen zur Statik des Tunnelbaus in quellfähigem Gebirge. Dissertation N. 9553. ETH. Zurich, Switzerland.Google Scholar
  4. Anagnostou, G. 1995Seepage flow around tunnels in swelling rockInt. J. Numer. Anal. Met.19705724CrossRefGoogle Scholar
  5. Aristorenas, G. V. (1992): Time-dependent behaviour of tunnels excavated in shale. Ph.D. Thesis, Massachusetts Institute of Technology. Boston, USA.Google Scholar
  6. Barla, G. 2001Tunnelling under squeezing rock conditionsKolymbas, D. eds. Tunnelling mechanicsEurosummer SchoolInnsbruck169268Google Scholar
  7. Barla, G. (2006): Large size tunnels excavated full face in difficult conditions. In: Löw, S. (ed.) Geologie und Geotechnik der Basistunnels am Gottherd und am Lötschberg, pp 275–286.Google Scholar
  8. Barla, G., Pazzagli, G., Rabagliati, U. (1986): The San Donato tunnel (Florence). In: Proc. Int. Congress on Large Caverns, pp 61–69.Google Scholar
  9. Barla, G., Forlati, F., Zaninetti, A. (1990): Prove di laboratorio su rocce tenere: problematiche ed esempi. In: Barla, G. (ed.) Terzo Ciclo di Conferenze di Meccanica e Ingegneria delle Rocce, MIR90. SGEditoriali, Padova.Google Scholar
  10. Barla, G., Barla, M., Bonini, M. (2004): Characterisation of Italian clay shales for tunnel design. Int. J. Rock Mech. Min. Sci. 41(3). CD-ROM, © 2004 Elsevier Ltd.Google Scholar
  11. Barla, M. (1999): Tunnels in swelling ground – simulation of 3D stress paths by triaxial laboratory testing. Ph.D. Thesis, Politecnico di Torino, Italy.Google Scholar
  12. Bellwald, P. (1990): A contribution to the design of tunnels in argillaceous rock. Ph.D. Thesis, Massachusetts Institute of Technology, Boston, USA.Google Scholar
  13. Boidy, E. (2002): Modélisation numérique du comportement différé des cavités souterraines. Ph.D. Thesis, Université Joseph Fourier, Grenoble, France.Google Scholar
  14. Boldini, D. (2002): Deep tunnels in weak rock-masses: analysis of the ground-shotcrete interaction. Ph.D. Thesis, University of Rome La Sapienza, Italy.Google Scholar
  15. Bonini, M. (2003): Mechanical behaviour of Clay-Shales (Argille Scagliose) and implications on the design of tunnels. Ph.D. Thesis, Politecnico di Torino, Italy.Google Scholar
  16. Bonini, M., Barla, M., Barla, G. (2003): Characterisation studies of tectonized Clay Shales and implications in the excavation of large size tunnels. In: Proc. 10th Int. Congr. on Rock Mechanics – ISRM 2003, Johannesburg.Google Scholar
  17. Bultel, F. (2001): Prise en compte du gonflement des terrains pour le dimensionnement des revêtements des tunnels. Ph.D. Thesis. Ecole Nationale des Ponts et Chaussées, Paris, France.Google Scholar
  18. Burland, J. B. 1990On the compressibility and shear strength of natural claysGéotechnique40329378CrossRefGoogle Scholar
  19. Cicolella, A., Picarelli, L. 1990Decadimento meccanico di una tipica argilla a scaglie di elevata plasticitàItal. Geotechnical J.24523Google Scholar
  20. D’Elia, B. (1980): Processi di ammorbidimento di un’argilla marnosa con struttura a scaglie. In: Proc., XIV Geotechnical National Congress, Vol. 2, pp 409–418.Google Scholar
  21. D’Elia, B. (1991): Deformation problems in the Italian structurally complex clay soils. In: Proc., 10th Europ. Conf. on Soil Mech. and Found. Eng., Vol. 4, pp 1159–1170.Google Scholar
  22. Di Maio, C., Fenelli, G. B. 1997Clayey soil deformability: the influence of physico-chemical interactionsItal. Geotechnical J.14354Google Scholar
  23. Einstein, H. H. 2000Tunnels in Opalinus Clayshale – a review of case histories and new developmentsTunn. Undergr. Sp. Tech.151329CrossRefGoogle Scholar
  24. Gioda, G., Cividini, A. 2002Numerical methods for the analysis of tunnel performance in squeezing rocksRock Mech. Rock Engng.29171193CrossRefGoogle Scholar
  25. Grob, H. (1972): Anhydrite Schwelldruck in Belchentunnel. Int. Symp. on Underground Openings. Lucerna, Switzerland, pp 99–119.Google Scholar
  26. Gysel, M. 2002Anhydrite dissolution phenomena: three case-histories of anhydrite karst caused by water tunnel operationRock Mech. Rock Engng.35121CrossRefGoogle Scholar
  27. Huder, J., Amberg, G. 1970Soft Quellung in mergel, Opalinuston und anhydritSchweizerische Bauzeitung88975980Google Scholar
  28. Itasca Inc. (2001): Flac2D 3.3, User’s manual. Minneapolis, USA.Google Scholar
  29. Lemaitre, J., Chaboche, J. L. (1996): Mécanique des matériaux solides. Dunod, pp 253–341.Google Scholar
  30. Leroueil, S., Vaughan, P. R. 1990The general and congruent effects of structure in natural soils and weak rocksGéotechnique40467488Google Scholar
  31. Loret, B., Hueckel, T., Gajo, A. 2002Chemo-mechanical coupling in saturated porous media: elastic-plastic behaviour of homoionic expansive claysInt. J. Solids Struct.3927732806CrossRefGoogle Scholar
  32. Lunardi, P., Focaracci, A. (1999): The Bologna to Florence high speed railway line: progress of underground. In: Alten et al. (eds) Challenges of the 21st Century, Balkema, Rotterdam.Google Scholar
  33. Madsen, F. T. 1999Suggested methods for laboratory testing of swelling rocksInt. J. Rock Mech. Min. Sci. Geomech. Abstr.26211225Google Scholar
  34. Mitchell, J. K., Soga, K. 2005Fundamentals of soil behaviour3John Wiley and Sons Inc.Hoboken, New Jersey, USAGoogle Scholar
  35. Olszak, W., Perzyna, P. (1964): On Elastic/Viscoplastic Soils, Rhéologie et Mécanique des sols. Symposium Franco-Polonais, Grenoble, Springer-Verlag, pp 47–57.Google Scholar
  36. Pellet, F., Hajdu, A., Deleruyelle, F., Besnus, F. 2005A viscoplastic constitutive model including anisotropic damage for the time dependent mechanical behaviour of rockInt. J. Numer. Anal. Meth. Geomech.29941970CrossRefGoogle Scholar
  37. Perzyna, P. (1966): Fundamental problems in viscoplasticity. Advances in applied mechanics, Vol. 9, Academic Press, pp 243–377.Google Scholar
  38. Picarelli, L., Olivares, L. 1998Ingredients for modelling the mechanical behaviour of intensely fissured clay shalesThe geotechnics of hard soils – soft rocksBalkemaRotterdam771770Google Scholar
  39. Picarelli, L., Olivares, L., Di Maio, C., Urciuoli, G. 2000Properties and behaviour of tectonized clay shales in ItalyThe geotechnics of hard soils – soft rocksBalkemaRotterdam12111241Google Scholar
  40. Pimentel, E. (1996): Quellverhalten von diagenetisch verfestigtem Tonstein. Ph.D. Thesis, Karlsruhe, Germany.Google Scholar
  41. Pregl, O., Fuchs, M., Müller, H., Petschl, G., Riedmüller, G., Schwaighofer, B. 1980Dreiaxiale Schwellversuche an TongesteinenGeotechnik317Google Scholar
  42. Wittke, W. (1978): Grundlagen für die Bemessung and Ausführung von Tunnels in quellendem Gebirge und ihre Anwendung beim Bau der Wendeschleife der S-Ban Stuttgart. Veröff. Institut f. Grundbau, Bodenmech, Felsmech., Verkehrswasserbau, RWTH Aachen, 6 pp.Google Scholar
  43. Wittke, W. 2000Swelling stability analysis for tunnels – fundamentalsVerlag Glückauf GmbHEssen, GermanyGoogle Scholar
  44. Wong, R. C. K. 1998Swelling and softening of La Biche shaleCan. Geotech. J.35206221CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • M. Bonini
    • 1
  • D. Debernardi
    • 1
  • M. Barla
    • 1
  • G. Barla
    • 1
  1. 1.Department of Structural and Geotechnical EngineeringPolitecnico di TorinoItaly

Personalised recommendations