Estimation of Block Sizes for Rock Masses with Non-persistent Joints

  • B. H. Kim
  • M. Cai
  • P. K. Kaiser
  • H. S. Yang


Discontinuities or joints in the rock mass have various shapes and sizes. Along with the joint orientation and spacing, the joint persistence, or the relative size of the joint, is one of the most important factors in determining the block sizes of jointed rock masses. Although the importance of joint persistence on the overall rock mass strength has long been identified, the impact of persistence on rock strength is in most current rock mass classification systems underrepresented. If joints are assumed to be persistent, as is the case in most designs, the sizes of the rock blocks tend to be underestimated. This can lead to more removable blocks than actually exist in-situ. In addition, a poor understanding of the rock bridge strength may lead to lower rock mass strengths, and consequently, to excessive expenditure on rock support.

In this study, we suggest and verify a method for the determination of the block sizes considering joint persistence. The idea emerges from a quantitative approach to apply the GSI system for rock mass classification, in which the accurate block size is required. There is a need to statistically analyze how the distribution of rock bridges according to the combination of joint orientation, spacing, and persistence will affect the actual size of each individual block. For this purpose, we generate various combinations of joints with different geometric conditions by the orthogonal arrays using the distinct element analysis tools of UDEC and 3DEC. Equivalent block sizes (areas in 2D and volumes in 3D) and their distributions are obtained from the numerical simulation. Correlation analysis is then performed to relate the block sizes predicted by the empirical equation to those obtained from the numerical model simulation. The results support the concept of equivalent block size proposed by Cai et al. (2004, Int. J. Rock Mech. Min. Sci., 41(1), 3–19).

Keywords: Block size, jointed rock mass, GSI system, joint persistence, simulation. 


  1. Barton, N. R., Lien, R., Lunde, J. 1974Engineering classification of rock masses for the design of tunnel supportRock Mech.6189239CrossRefGoogle Scholar
  2. Bieniawski, Z. T. 1973Engineering classification of jointed rock massesTrans S. Afr. Inst. Civ. Engrs.15335344Google Scholar
  3. Bieniawski, Z. T. (1976): Rock mass classification in rock engineering. In: Proc. Symp. on Exploration for Rock Engineering, Balkema, Cape Town, 97–106.Google Scholar
  4. Brady, B. H. G., Brown, E. T. 1992Rock Mechanics for Underground MiningChampman & HallLondon569Google Scholar
  5. Cai, M., Horii, H. 1992A constitutive model of highly jointed rock massesMech. Mater.13217246CrossRefGoogle Scholar
  6. Cai, M., Kaiser, P. K. (2006): Visualization of rock mass classification systems. Geotechn. Geol. Engng. (in press).Google Scholar
  7. Cai, M., Kaiser, P. K., Uno, H., Tasaka, Y., Minami, M. 2004Estimation of rock mass strength and deformation modulus of jointed hard rock masses using the GSI systemInt. J. Rock Mech. Min. Sci.41319CrossRefGoogle Scholar
  8. Dershowitz, W. S., Einstein, H. H. 1988Characterizing rock joint geometry with joint system modelsRock Mech. Rock Engng.212151CrossRefGoogle Scholar
  9. Devore, J. L. 2000Probability and statistics for engineering and sciencesThomson LearningDuxburyGoogle Scholar
  10. Diederichs, M. S., Kaiser, P. K. 1999Tensile strength and abutment relaxation as failure control mechanisms in underground excavationsInt. J. Rock Mech. Min. Sci. Geomech. Abstr.366996CrossRefGoogle Scholar
  11. Einstein, H. H. 1993Modern developments in discontinuity analysis, the persistence-connectivity problemComprehensive rock engineeringPergamon PressOxford193213Google Scholar
  12. Einstein, H. H., Veneziano, D., Baecher, G., O’Reilly, K. 1983The effect of discontinuity persistence on rock slope stabilityInt. J. Rock Mech. Min. Sci. Geomech. Abstr.20227236CrossRefGoogle Scholar
  13. Hoek, E., Carranza-Torres, C., Corkum, B. (2002): Hoek-Brown failure criterion – 2002 edition. In: Proc., 5th North American Rock Mech. Symposium, Toronto, Canada, 267–273.Google Scholar
  14. Hoek, E., Kaiser, P. K., Bawden, W. F. 1995Support of underground excavations in hard rockA. A. BalkemaRotterdam215Google Scholar
  15. Itasca (2004a): 3DEC. Itasca Consulting Group Inc., Version 3.0.Google Scholar
  16. Itasca (2004b): UDEC-Universal Distinct Element Code. Itasca Consulting Group Inc., Version 4.0.Google Scholar
  17. Kemeny, J. M. 2003The time-dependent reduction of sliding cohesion due to rock bridges along discontinuities: A fracture mechanics approachRock Mech. Rock Engng.362738CrossRefGoogle Scholar
  18. Kemeny, J. M. 2005Time-dependent drift degradation due to the progressive failure of rock bridges along discontinuitiesInt. J. Rock Mech. Min. Sci.423546CrossRefGoogle Scholar
  19. Kemeny, J. M., Cook, N. G. W. 1986Effective moduli, non-linear deformation and strength of cracked elastic solidInt. J. Rock Mech. Min. Sci. Geomech. Abstr.23107118CrossRefGoogle Scholar
  20. Kim, B. H. (2002): Revaluation of rock mass classification using multivariate analysis and estimation of the support on tunnel. Ph. D. Thesis, Chonnam National University, South Korea.Google Scholar
  21. Mahtab, M.A., Grasso, P. 1992Geomechanics principles in the design of tunnels and caverns in rockElsevierAmsterdam250Google Scholar
  22. Mendenhall, W., Sincich, T. 1995Statistics for engineering and sciencesPrentice-Hall, Englewood CliffsNew JerseyGoogle Scholar
  23. Nichol, S. L., Hungr, O., Evans, S.G. 2002Large-scale brittle and ductile toppling of rock slopesCan. Geotech. J.39773788CrossRefGoogle Scholar
  24. Palisade Corporation (2001): @RISK. Palisade Corporation.Google Scholar
  25. Reyes, O., Einstein, H. (1991): Failure mechanisms of fractured rock – A fracture coalescence model. In: Proc., 7th ISRM, 333–339.Google Scholar
  26. Shen, B., Stephansson, O., Einstein, H., Ghahreman, B. 1995Coalescence of fracture under shear stresses in experimentsJ. Geophys. Res.10059755990CrossRefGoogle Scholar
  27. Sjöberg, J. (1996). Large scale slope stability in open pit mining – a review. Technical Report, Lulea University of Technology, Division of Rock Mechanics, Lulea, Sweden, 229.Google Scholar
  28. Song, J. J., Lee, C. I. 2001Estimation of joint length distribution using window samplingInt. J. Rock Mech. Min. Sci.38519528CrossRefGoogle Scholar
  29. Song, J. J., Lee, C. I., Seto, M. 2001Stability analysis of rock blocks around a tunnel using a statistical joint modeling techniqueTunnell. Underground Space Technol.16341351CrossRefGoogle Scholar
  30. SPSS Inc. (2004): SPSS 12.0KOR for Windows.Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • B. H. Kim
    • 1
    • 2
  • M. Cai
    • 1
  • P. K. Kaiser
    • 1
  • H. S. Yang
    • 3
  1. 1.Geomechanics Research Centre, MIRARCO Inc., Laurentian UniversitySudburyCanada
  2. 2.Iksan Branch Office, Korea Resources CorporationIksanSouth Korea
  3. 3.Department of Civil, Geosystem and Environmental EngineeringChonnam National UniversityGwangjuSouth Korea

Personalised recommendations