Advertisement

Few-Body Systems

, 60:26 | Cite as

Spectrum of Light- and Heavy-Baryons

  • S.-X. Qin
  • C. D. RobertsEmail author
  • S. M. Schmidt
Article
  • 15 Downloads
Part of the following topical collections:
  1. Ludwig Faddeev Memorial Issue

Abstract

A symmetry-preserving truncation of the strong-interaction bound-state equations is used to calculate the spectrum of ground-state \(J=1/2^+\), \(3/2^+\) \((qq^\prime q^{\prime \prime })\)-baryons, where \(q, q^\prime , q^{\prime \prime } \in \{u,d,s,c,b\}\), their first positive-parity excitations and parity partners. Using two parameters, a description of the known spectrum of 39 such states is obtained, with a mean-absolute-relative-difference between calculation and experiment of 3.6(2.7)%. From this foundation, the framework is subsequently used to predict the masses of 90 states not yet seen empirically.

Notes

Acknowledgements

We are grateful for constructive comments and encouragement from L. Chang, C. Chen, Z.-F. Cui, R. Gothe, V. Mokeev, J. Segovia, S.-S. Xu and P.-L. Yin; and for the hospitality of RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany. Work supported by: National Natural Science Foundation of China (NSFC) under Grant Nos. 11805024 and 11847301. Fundamental Research Funds for the Central Universities (China) under Grant No. 2019CDJDWL0005; Jiangsu Province Hundred Talents Plan for Professionals; U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357; and Forschungszentrum Jülich GmbH.

References

  1. 1.
    L.D. Faddeev, Scattering theory for a three particle system. Sov. Phys. JETP, 12, 1014–1019 (1961) [Zh. Eksp. Teor. Fiz. 39 (1960) 1459]Google Scholar
  2. 2.
    R.T. Cahill, C.D. Roberts, J. Praschifka, Baryon structure and QCD. Austral. J. Phys. 42, 129–145 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    C.J. Burden, R.T. Cahill, J. Praschifka, Baryon structure and QCD: nucleon calculations. Austral. J. Phys. 42, 147–159 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    R.T. Cahill, Hadronization of QCD. Austral. J. Phys. 42, 171–186 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    H. Reinhardt, Hadronization of quark flavor dynamics. Phys. Lett. B 244, 316–326 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    G.V. Efimov, M.A. Ivanov, V.E. Lyubovitskij, Quark–diquark approximation of the three quark structure of baryons in the quark confinement model. Z. Phys. C 47, 583–594 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    P.O. Bowman et al., Unquenched gluon propagator in Landau gauge. Phys. Rev. D 70, 034509 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    P. Boucaud, T. Brüntjen, J.P. Leroy, A. Le Yaouanc, A.Y. Lokhov, J. Micheli, O. Pène, J. Rodríguez-Quintero, Is the QCD ghost dressing function finite at zero momentum? JHEP 06, 001 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    P. Boucaud, J.P. Leroy, A. Le-Yaouanc, J. Micheli, O. Pene, J. Rodríguez-Quintero, The infrared behaviour of the pure Yang–Mills Green functions. Few Body Syst. 53, 387–436 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti, J. Rodríguez-Quintero, Quark flavour effects on gluon and ghost propagators. Phys. Rev. D 86, 074512 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    A. Aguilar, D. Binosi, J. Papavassiliou, Unquenching the gluon propagator with Schwinger–Dyson equations. Phys. Rev. D 86, 014032 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, Bridging a gap between continuum-QCD and ab initio predictions of hadron observables. Phys. Lett. B 742, 183–188 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    A.C. Aguilar, D. Binosi, J. Papavassiliou, The gluon mass generation mechanism: a concise primer. Front. Phys. China 11, 111203 (2016)Google Scholar
  14. 14.
    D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, C.D. Roberts, Natural constraints on the gluon-quark vertex. Phys. Rev. D 95, 031501(R) (2017)ADSCrossRefGoogle Scholar
  15. 15.
    D. Binosi, C.D. Roberts, J. Rodríguez-Quintero, Scale-setting, flavour dependence and chiral symmetry restoration. Phys. Rev. D 95, 114009 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    D. Binosi, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, Process-independent strong running coupling. Phys. Rev. D 96, 054026 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    J. Rodríguez-Quintero, D. Binosi, C. Mezrag, J. Papavassiliou, C.D. Roberts, Process-independent effective coupling. From QCD Green’s functions to phenomenology. Few Body Syst. 59, 121 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    F. Gao, S.-X. Qin, C.D. Roberts, J. Rodriguez-Quintero, Locating the Gribov horizon. Phys. Rev. D 97, 034010 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    K.D. Lane, Asymptotic freedom and Goldstone realization of chiral symmetry. Phys. Rev. D 10, 2605 (1974)ADSCrossRefGoogle Scholar
  20. 20.
    H.D. Politzer, Effective quark masses in the chiral limit. Nucl. Phys. B 117, 397 (1976)ADSCrossRefGoogle Scholar
  21. 21.
    M.S. Bhagwat, M.A. Pichowsky, C.D. Roberts, P.C. Tandy, Analysis of a quenched lattice QCD dressed quark propagator. Phys. Rev. C 68, 015203 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    P.O. Bowman et al., Unquenched quark propagator in Landau gauge. Phys. Rev. D 71, 054507 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    M.S. Bhagwat, P.C. Tandy, Analysis of full-QCD and quenched-QCD lattice propagators. AIP Conf. Proc. 842, 225–227 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    L. Chang, Y.-X. Liu, C.D. Roberts, Dressed-quark anomalous magnetic moments. Phys. Rev. Lett. 106, 072001 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    H.J. Munczek, Dynamical chiral symmetry breaking, Goldstone’s theorem and the consistency of the Schwinger–Dyson and Bethe–Salpeter equations. Phys. Rev. D 52, 4736–4740 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    A. Bender, C.D. Roberts, L. von Smekal, Goldstone theorem and diquark confinement beyond rainbow-ladder approximation. Phys. Lett. B 380, 7–12 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    D. Binosi, L. Chang, S.-X. Qin, J. Papavassiliou, C.D. Roberts, Symmetry preserving truncations of the gap and Bethe–Salpeter equations. Phys. Rev. D 93, 096010 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    C.D. Roberts, A.G. Williams, Dyson–Schwinger equations and their application to hadronic physics. Prog. Part. Nucl. Phys. 33, 477–575 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    L. Chang, C.D. Roberts, P.C. Tandy, Selected highlights from the study of mesons. Chin. J. Phys. 49, 955–1004 (2011)Google Scholar
  30. 30.
    A. Bashir et al., Collective perspective on advances in Dyson–Schwinger equation QCD. Commun. Theor. Phys. 58, 79–134 (2012)zbMATHCrossRefGoogle Scholar
  31. 31.
    C.D. Roberts, Three lectures on hadron physics. J. Phys. Conf. Ser. 706, 022003 (2016)CrossRefGoogle Scholar
  32. 32.
    T. Horn, C.D. Roberts, The pion: an enigma within the standard model. J. Phys. G. 43, 073001 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S. Fischer, Baryons as relativistic three-quark bound states. Prog. Part. Nucl. Phys. 91, 1–100 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    V.D. Burkert, C.D. Roberts, Colloquium: Roper resonance: Toward a solution to the fifty year puzzle. Rev. Mod. Phys. 91, 011003 (2019)Google Scholar
  35. 35.
    J. Segovia, C.D. Roberts, S.M. Schmidt, Understanding the nucleon as a Borromean bound-state. Phys. Lett. B 750, 100–106 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    M.B. Hecht, C.D. Roberts, M. Oettel, A.W. Thomas, S.M. Schmidt, P.C. Tandy, Nucleon mass and pion loops. Phys. Rev. C 65, 055204 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    R.T. Cahill, C.D. Roberts, J. Praschifka, Calculation of diquark masses in QCD. Phys. Rev. D 36, 2804 (1987)ADSCrossRefGoogle Scholar
  38. 38.
    P. Maris, Effective masses of diquarks. Few Body Syst. 32, 41–52 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Bi, H. Cai, Y. Chen, M. Gong, Z. Liu, H.-X. Qiao, Y.-B. Yang, Diquark mass differences from unquenched lattice QCD. Chin. Phys. C 40, 073106 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    M.S. Bhagwat, A. Höll, A. Krassnigg, C.D. Roberts, P.C. Tandy, Aspects and consequences of a dressed-quark-gluon vertex. Phys. Rev. C 70, 035205 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    J. Segovia, I.C. Cloët, C.D. Roberts, S.M. Schmidt, Nucleon and \(\Delta \) elastic and transition form factors. Few Body Syst. 55, 1185–1222 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    C.D. Roberts, Hadron physics and QCD: just the basic facts. J. Phys. Conf. Ser. 630, 012051 (2015)CrossRefGoogle Scholar
  43. 43.
    J. Segovia, B. El-Bennich, E. Rojas, I.C. Cloët, C.D. Roberts, S.-S. Xu, H.-S. Zong, Completing the picture of the Roper resonance. Phys. Rev. Lett. 115, 171801 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    C.D. Roberts, N* structure and strong QCD. Few Body Syst. 59, 72 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    J. Segovia, C.D. Roberts, Dissecting nucleon transition electromagnetic form factors. Phys. Rev. C 94, 042201(R) (2016)ADSCrossRefGoogle Scholar
  46. 46.
    C. Chen, Y. Lu, D. Binosi, C.D. Roberts, J. Rodríguez-Quintero, J. Segovia, Nucleon-to-Roper electromagnetic transition form factors at large-\(Q^2\). Phys. Rev. D 99, 034013 (2019)ADSCrossRefGoogle Scholar
  47. 47.
    G. Eichmann, Progress in the calculation of nucleon transition form factors. Few Body Syst. 57, 965–973 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    G. Eichmann, More about the light baryon spectrum. Few Body Syst. 58, 81 (2017)ADSCrossRefGoogle Scholar
  49. 49.
    Y. Lu, C. Chen, C.D. Roberts, J. Segovia, S.-S. Xu, H.-S. Zong, Parity partners in the baryon resonance spectrum. Phys. Rev. C 96, 015208 (2017)ADSCrossRefGoogle Scholar
  50. 50.
    C. Chen, B. El-Bennich, C.D. Roberts, S.M. Schmidt, J. Segovia, S. Wan, Structure of the nucleon’s low-lying excitations. Phys. Rev. D 97, 034016 (2018)ADSCrossRefGoogle Scholar
  51. 51.
    C. Mezrag, J. Segovia, L. Chang, C.D. Roberts, Parton distribution amplitudes: revealing correlations within the proton and Roper. Phys. Lett. B 783, 263–267 (2018)ADSCrossRefGoogle Scholar
  52. 52.
    C. Chen, G. Krein, C.D. Roberts, S.M. Schmidt, J. Segovia, Spectrum and structure of octet and decuplet baryons and their positive-parity excitations. arXiv:1901.04305 [nucl-th]
  53. 53.
    J. Segovia, Structure of the nucleon and its first radial excitation. Few Body Syst. (Special Issue dedicated to Ludwig Faddeev) (2019)Google Scholar
  54. 54.
    V.I. Mokeev et al., New results from the studies of the \(N(1440)1/2^+\), \(N(1520)3/2^-\), and \(\Delta (1620)1/2^-\) resonances in exclusive \(ep \rightarrow e^{\prime }p^{\prime } \pi ^+ \pi ^-\) electroproduction with the CLAS detector. Phys. Rev. C 93, 025206 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    V.I. Mokeev, Nucleon resonance structure from exclusive meson electroproduction with CLAS. Few Body Syst. 59, 46 (2018)CrossRefGoogle Scholar
  56. 56.
    A.V. Anisovich et al., Strong evidence for nucleon resonances near 1900 MeV. Phys. Rev. Lett. 119, 062004 (2017)ADSCrossRefGoogle Scholar
  57. 57.
    M. Ripani et al., Measurement of \(e p \rightarrow e^\prime p \pi ^+ \pi ^-\) and baryon resonance analysis. Phys. Rev. Lett. 91, 022002 (2003)ADSCrossRefGoogle Scholar
  58. 58.
    V.I. Mokeev, I. Aznauryan, V. Burkert, R. Gothe, Recent results on the nucleon resonance spectrum and structure from the CLAS detector. EPJ Web Conf. 113, 01013 (2016)CrossRefGoogle Scholar
  59. 59.
    E. Golovatch et al., First results on nucleon resonance photocouplings from the \(\gamma p \rightarrow \pi ^+\pi ^-p\) reaction. Phys. Lett. B 788, 371–379 (2019)ADSCrossRefGoogle Scholar
  60. 60.
    G. Eichmann, R. Alkofer, A. Krassnigg, D. Nicmorus, Nucleon mass from a covariant three-quark Faddeev equation. Phys. Rev. Lett. 104, 201601 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    G. Eichmann, Nucleon electromagnetic form factors from the covariant Faddeev equation. Phys. Rev. D 84, 014014 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    H. Sanchis-Alepuz, G. Eichmann, S. Villalba-Chavez, R. Alkofer, Delta and Omega masses in a three-quark covariant Faddeev approach. Phys. Rev. D 84, 096003 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    G. Eichmann, C.S. Fischer, Nucleon axial and pseudoscalar form factors from the covariant Faddeev equation. Eur. Phys. J. A 48, 9 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    H. Sanchis-Alepuz, C.S. Fischer, Octet and Decuplet masses: a covariant three-body Faddeev calculation. Phys. Rev. D 90, 096001 (2014)ADSCrossRefGoogle Scholar
  65. 65.
    H. Sanchis-Alepuz, C.S. Fischer, Hyperon elastic electromagnetic form factors in the space-like momentum region. Eur. Phys. J. A 52, 34 (2016)ADSCrossRefGoogle Scholar
  66. 66.
    G. Eichmann, C.S. Fischer, H. Sanchis-Alepuz, Light baryons and their excitations. Phys. Rev. D 94, 094033 (2016)ADSCrossRefGoogle Scholar
  67. 67.
    H. Sanchis-Alepuz, R. Alkofer, C.S. Fischer, Electromagnetic transition form factors of baryons in the space-like momentum region. Eur. Phys. J. A 54, 41 (2018)ADSCrossRefGoogle Scholar
  68. 68.
    S.-X. Qin, C.D. Roberts, S.M. Schmidt, Poincaré-covariant analysis of heavy-quark baryons. Phys. Rev. D 97, 114017 (2018)ADSCrossRefGoogle Scholar
  69. 69.
    Q.-W. Wang, S.-X. Qin, C.D. Roberts, S.M. Schmidt, Proton tensor charges from a Poincaré-covariant Faddeev equation. Phys. Rev. D 98, 054019 (2018)ADSCrossRefGoogle Scholar
  70. 70.
    J.C. Ward, An identity in quantum electrodynamics. Phys. Rev. 78, 182 (1950)ADSzbMATHCrossRefGoogle Scholar
  71. 71.
    H.S. Green, A pre-renormalized quantum electrodynamics. Proc. Phys. Soc. A 66, 873–880 (1953)ADSzbMATHCrossRefGoogle Scholar
  72. 72.
    Y. Takahashi, On the generalized Ward identity. Nuovo Cim. 6, 371–375 (1957)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    S.-X. Qin, L. Chang, Y.-X. Liu, C.D. Roberts, D.J. Wilson, Interaction model for the gap equation. Phys. Rev. C 84, 042202(R) (2011)ADSCrossRefGoogle Scholar
  74. 74.
    S.-X. Qin, L. Chang, Y.-X. Liu, C.D. Roberts, D.J. Wilson, Commentary on rainbow-ladder truncation for excited states and exotics. Phys. Rev. C 85, 035202 (2012)ADSCrossRefGoogle Scholar
  75. 75.
    L. Chang, Y.-X. Liu, C.D. Roberts, Y.-M. Shi, W.-M. Sun, H.-S. Zong, Chiral susceptibility and the scalar Ward identity. Phys. Rev. C 79, 035209 (2009)ADSCrossRefGoogle Scholar
  76. 76.
    M. Chen, M. Ding, L. Chang, C.D. Roberts, Mass-dependence of pseudoscalar meson elastic form factors. Phys. Rev. D 98, 091505(R) (2018)ADSCrossRefGoogle Scholar
  77. 77.
    G. Eichmann, I.C. Cloët, R. Alkofer, A. Krassnigg, C.D. Roberts, Toward unifying the description of meson and baryon properties. Phys. Rev. C 79, 012202(R) (2009)ADSCrossRefGoogle Scholar
  78. 78.
    G. Eichmann, From quarks and gluons to baryon form factors. Prog. Part. Nucl. Phys. 67, 234–238 (2012)ADSCrossRefGoogle Scholar
  79. 79.
    L. Chang, C.D. Roberts, Sketching the Bethe–Salpeter kernel. Phys. Rev. Lett. 103, 081601 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    L. Chang, C.D. Roberts, Tracing masses of ground-state light-quark mesons. Phys. Rev. C 85, 052201(R) (2012)ADSCrossRefGoogle Scholar
  81. 81.
    G. Eichmann, R. Alkofer, I.C. Cloët, A. Krassnigg, C.D. Roberts, Perspective on rainbow-ladder truncation. Phys. Rev. C 77, 042202(R) (2008)ADSCrossRefGoogle Scholar
  82. 82.
    T. Hilger, C. Popovici, M. Gomez-Rocha, A. Krassnigg, Spectra of heavy quarkonia in a Bethe–Salpeter-equation approach. Phys. Rev. D 91, 034013 (2015)ADSCrossRefGoogle Scholar
  83. 83.
    M. Ding, F. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, Leading-twist parton distribution amplitudes of S-wave heavy-quarkonia. Phys. Lett. B 753, 330–335 (2016)ADSCrossRefGoogle Scholar
  84. 84.
    M. Gómez-Rocha, T. Hilger, A. Krassnigg, Effects of a dressed quark-gluon vertex in vector heavy-light mesons and theory average of the \(B_c^*\) meson mass. Phys. Rev. D 93, 074010 (2016)ADSCrossRefGoogle Scholar
  85. 85.
    J. Chen, M. Ding, L. Chang, Y.-X. Liu, Two photon transition form factor of \(\bar{c}c \) quarkonia. Phys. Rev. D 95, 016010 (2017)ADSCrossRefGoogle Scholar
  86. 86.
    T. Hilger, M. Gómez-Rocha, A. Krassnigg, W. Lucha, Aspects of open-flavour mesons in a comprehensive DSBSE study. Eur. Phys. J. A 53, 213 (2017)ADSCrossRefGoogle Scholar
  87. 87.
    D. Binosi, L. Chang, M. Ding, F. Gao, J. Papavassiliou, C.D. Roberts, Distribution amplitudes of heavy-light mesons. Phys. Lett. B 790, 257–262 (2019)ADSCrossRefGoogle Scholar
  88. 88.
    P. Maris, C.D. Roberts, \(\pi \) and \(K\) meson Bethe–Salpeter amplitudes. Phys. Rev. C 56, 3369–3383 (1997)ADSCrossRefGoogle Scholar
  89. 89.
    A. Krassnigg, Excited mesons in a Bethe–Salpeter approach. PoS, CONFINEMENT8, 075 (2008)Google Scholar
  90. 90.
    M. Tanabashi et al., Review of particle physics. Phys. Rev. D 98, 030001 (2018)ADSCrossRefGoogle Scholar
  91. 91.
    C.D. Roberts, R.T. Cahill, J. Praschifka, QCD and a calculation of the \(\omega \)-\(\rho \) mass splitting. Int. J. Mod. Phys. A 4, 719 (1989)ADSCrossRefGoogle Scholar
  92. 92.
    L.C. Hollenberg, C.D. Roberts, B.H. McKellar, Two loop calculation of the \(\omega \)-\(\rho \) mass splitting. Phys. Rev. C 46, 2057–2065 (1992)ADSCrossRefGoogle Scholar
  93. 93.
    M.A. Pichowsky, S. Walawalkar, S. Capstick, Meson-loop contributions to the \(\rho \) \(\omega \) mass splitting and \(\rho \) charge radius. Phys. Rev. D 60, 054030 (1999)ADSCrossRefGoogle Scholar
  94. 94.
    S. Okubo, Note on unitary symmetry in strong interactions. Prog. Theor. Phys. 27, 949–966 (1962)ADSzbMATHCrossRefGoogle Scholar
  95. 95.
    M. Gell-Mann, Symmetries of baryons and mesons. Phys. Rev., 125, 1067–1084 (1962), see also “The eightfold way: a theory of strong interaction symmetry. DOE Technical Report TID-12608 (1961)Google Scholar
  96. 96.
    S. Durr et al., Ab-initio determination of light hadron masses. Science 322, 1224–1227 (2008)ADSCrossRefGoogle Scholar
  97. 97.
    P. Maris, C.D. Roberts, S.M. Schmidt, P.C. Tandy, T-dependence of pseudoscalar and scalar correlations. Phys. Rev. C 63, 025202 (2001)ADSCrossRefGoogle Scholar
  98. 98.
    K.-L. Wang, Y.-X. Liu, L. Chang, C.D. Roberts, S.M. Schmidt, Baryon and meson screening masses. Phys. Rev. D 87, 074038 (2013)ADSCrossRefGoogle Scholar
  99. 99.
    M. Cheng et al., Meson screening masses from lattice QCD with two light and the strange quark. Eur. Phys. J. C 71, 1564 (2011)ADSCrossRefGoogle Scholar
  100. 100.
    G. Aarts, C. Allton, D. De Boni, S. Hands, B. Jäger, C. Praki, J.-I. Skullerud, Light baryons below and above the deconfinement transition: medium effects and parity doubling. JHEP 06, 034 (2017)ADSCrossRefGoogle Scholar
  101. 101.
    S. Weinberg, Precise relations between the spectra of vector and axial vector mesons. Phys. Rev. Lett. 18, 507–509 (1967)ADSCrossRefGoogle Scholar
  102. 102.
    C.D. Roberts, Perspective on the origin of hadron masses. Few Body Syst. 58, 5 (2017)ADSCrossRefGoogle Scholar
  103. 103.
    P. Maris, P.C. Tandy, Bethe–Salpeter study of vector meson masses and decay constants. Phys. Rev. C 60, 055214 (1999)ADSCrossRefGoogle Scholar
  104. 104.
    L. Chang, Y.-X. Liu, W.-M. Sun, H.-S. Zong, Revisiting the vector and axial-vector vacuum susceptibilities. Phys. Lett. B 669, 327–330 (2008)ADSCrossRefGoogle Scholar
  105. 105.
    H.L.L. Roberts, L. Chang, I.C. Cloët, C.D. Roberts, Masses of ground and excited-state hadrons. Few Body Syst. 51, 1–25 (2011)ADSCrossRefGoogle Scholar
  106. 106.
    C. Chen, L. Chang, C.D. Roberts, S.-L. Wan, D.J. Wilson, Spectrum of hadrons with strangeness. Few Body Syst. 53, 293–326 (2012)ADSCrossRefGoogle Scholar
  107. 107.
    J.C.R. Bloch, YuL Kalinovsky, C.D. Roberts, S.M. Schmidt, Describing a(1) and b(1) decays. Phys. Rev. D 60, 111502 (1999)ADSCrossRefGoogle Scholar
  108. 108.
    F. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, S.M. Schmidt, Parton distribution amplitudes of light vector mesons. Phys. Rev. D 90, 014011 (2014)ADSCrossRefGoogle Scholar
  109. 109.
    S.-X. Qin, Comments on formulating meson bound-state equations beyond rainbow-ladder approximation. Few Body Syst. 57, 1059–1065 (2016)ADSCrossRefGoogle Scholar
  110. 110.
    R. Williams, C.S. Fischer, W. Heupel, Light mesons in QCD and unquenching effects from the 3PI effective action. Phys. Rev. D 93, 034026 (2016)ADSCrossRefGoogle Scholar
  111. 111.
    Z.S. Brown, W. Detmold, S. Meinel, K. Orginos, Charmed bottom baryon spectroscopy from lattice QCD. Phys. Rev. D 90, 094507 (2014)ADSCrossRefGoogle Scholar
  112. 112.
    N. Isgur, G. Karl, P wave baryons in the quark model. Phys. Rev. D 18, 4187 (1978)ADSCrossRefGoogle Scholar
  113. 113.
    M. Gell-Mann, A schematic model of baryons and mesons. Phys. Lett. 8, 214–215 (1964)ADSCrossRefGoogle Scholar
  114. 114.
    G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Parts 1 and 2 (CERN Reports No. 8182/TH. 401 and No. 8419/TH. 412) (1964)Google Scholar
  115. 115.
    L.D. Roper, Evidence for a P-11 pion-nucleon resonance at 556 MeV. Phys. Rev. Lett. 12, 340–342 (1964)ADSCrossRefGoogle Scholar
  116. 116.
    P. Bareyre, C. Bricman, G. Valladas, G. Villet, J. Bizard, J. Seguinot, Pion-nucleon interactions between Tlab = 300 and Tlab = 700 MeV. Phys. Lett. 8, 137–141 (1964)ADSCrossRefGoogle Scholar
  117. 117.
    P. Auvil, C. Lovelace, A. Donnachie, A. Lea, Pion-nucleon phase shifts and resonances. Phys. Lett. 12, 76–80 (1964)ADSCrossRefGoogle Scholar
  118. 118.
    S.L. Adelman, Evidence for an \({N}^{*}\) resonance at 1425 MeV. Phys. Rev. Lett. 13, 555–557 (1964)ADSCrossRefGoogle Scholar
  119. 119.
    L.D. Roper, R.M. Wright, B.T. Feld, Energy-dependent pion-nucleon phase-shift analysis. Phys. Rev. 138, B190–B210 (1965)ADSCrossRefGoogle Scholar
  120. 120.
    A. Höll, A. Krassnigg, C.D. Roberts, Pseudoscalar meson radial excitations. Phys. Rev. C 70, 042203(R) (2004)ADSCrossRefGoogle Scholar
  121. 121.
    B.L. Li, L. Chang, F. Gao, C.D. Roberts, S.M. Schmidt, H.S. Zong, Distribution amplitudes of radially-excited \(\pi \) and K mesons. Phys. Rev. D 93, 114033 (2016)ADSCrossRefGoogle Scholar
  122. 122.
    B.-L. Li, L. Chang, M. Ding, C.D. Roberts, H.-S. Zong, Leading-twist distribution amplitudes of scalar- and vector-mesons. Phys. Rev. D 94, 094014 (2016)ADSCrossRefGoogle Scholar
  123. 123.
    L. Chang, I.C. Cloët, J.J. Cobos-Martinez, C.D. Roberts, S.M. Schmidt, P.C. Tandy, Imaging dynamical chiral symmetry breaking: pion wave function on the light front. Phys. Rev. Lett. 110, 132001 (2013)ADSCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2019

Authors and Affiliations

  1. 1.Department of PhysicsChongqing UniversityChongqingPeople’s Republic of China
  2. 2.Argonne National LaboratoryLemontUSA
  3. 3.Institute for Advanced SimulationForschungszentrum Jülich and JARAJülichGermany

Personalised recommendations