Few-Body Systems

, 60:16 | Cite as

Electric Properties of the Neon-31 Nuclei Under Halo EFT Formalism



The electric properties of the \(^{31}\hbox {Ne}\) halo system is studied using Halo Effective Field Theory. We apply the Effective-Range method to match the parameters of the EFT from obtained data on the \(1/2^{+}\) and \(3/2^{-}\) levels in Neon-31 nuclide. We then obtain predictions for the one-neutron separation energy for the ground \(3/2^-\) state and the predicted \(1/2^+\) state. It is shown that the \(^{31}\hbox {Ne}\) has a halo feature with a small separation energy. The neutron radius is also discussed in this paper. Our work provides an applicable approach to analyze nuclei with heavy mass and large deformation.



The author is grateful to R. Chatterjee for supplying relevant literature and Y.-B. Cai and S. Cheng for valuable comments on the manuscript. We thank X.-Q. Qian and J.-S. Zhang for helpful discussion and S. Cheng for offering great supports in my life. The author would like to thank the professor Y.-D. Li for his support to this work and deeply miss him.


  1. 1.
    C.A. Bertulani, H.-W. Hammer, U. Van Kolck, Nucl. Phys. A. 712, 37 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    P.F. Bedaque, H.-W. Hammer, U. Van Kolck, Phys. Lett. B. 569, 159 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    J. Rotureau, U. Van Kolck, Few Body Syst. 54, 725 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    C. Ji, C. Elster, D.R. Phillips, Phys. Rev. C. 90, 044004 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    H.-W. Hammer, D.R. Phillips, Nucl. Phys. A. 865, 17 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    G. Rupak, L. Fernando, A. Vaghani, Phys. Rev. C. 86, 044608 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    B. Acharya, D.R. Phillips, Nucl. Phys. A. 913, 103 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    X. Zhang, K.M. Nollett, D.R. Phillips, Phys. Rev. C. 89, 051602 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    H.-W. Hammer, C. Ji, D.R. Phillips, J. Phys. G: Nucl. Part. Phys. 44, 103002 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    H. Horiuchi, K. Ikeda, Prog. Theor. Phys. 40, 277 (1968)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Kat, Y. Suzuki, E. Uegaki, Prog. Theor. Phys. Suppl. 68, 29 (1980)ADSCrossRefGoogle Scholar
  12. 12.
    W. Geithner, T. Neff, G. Audi, K. Blaum, P. Delahaye, H. Feldmeier, S. George, C. Gunaut, F. Herfurth, A. Herlert, Phys. Rev. Lett. 101, 252502 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    M. Kimura, H. Horiuchi, Prog. Theor. Phys. 107, 33 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    M. Kimura, H. Horiuchi, Prog. Theor. Phys. 111, 841 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    P. Descouvemont, Nucl. Phys. A. 655, 440 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Shubhchintak, R. Chatterjee, Nucl. Phys. A. 922, 99 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    S. Ahmad, D. Chauhan, A.A. Usmani, Z.A. Khan, Eur. Phys. J. A. 52, 128 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Urata, K. Hagino, H. Sagawa, Phys. Rev. C. 83, 041303(R) (2011)ADSCrossRefGoogle Scholar
  19. 19.
    T. Nakamura, N. Kobayashi, Y. Kondo, Y. Satou, N. Aoi, H. Baba, S. Deguchi, N. Fukuda, J. Gibelin, N. Inabe et al., Phys. Rev. Lett. 103, 262501 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    T. Nakamura, N. Kobayashi, Y. Kondo, Y. Satou, J.A. Tostevin, Y. Utsuno, N. Aoi, H. Baba, N. Fukuda, J. Gibelin et al., Phys. Rev. Lett. 112, 142501 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    L. Platter, Few Body Syst. 46, 139 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    H.W. Hammer, L. Platter, Annu. Rev. Nucl. Part. Sci. 60, 207 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    P. R. Hagen, Ph.D. thesis, Bonn University, 2014Google Scholar
  24. 24.
    Y. Yanagisawa, M. Notani, H. Sakurai, M. Kunibu, H. Akiyoshi, N. Aoi, H. Baba, K. Demichi, N. Fukuda, H. Hasegawa et al., Nucl. Phys. A. 734, 374 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    A. Poves, J. Retamosa, Nucl. Phys. A. 571, 221 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    W. Horiuchi, Y. Suzuki, P. Capel, D. Baye, Phys. Rev. C. 81, 024606 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Lett. B. 424, 390 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B. 534, 329 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    S. Typel, G. Baur, Phys. Rev. Lett. 93, 142502 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    S. Typel, G. Baur, Nucl. Phys. A. 759, 247 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    E. Wilbring, H.-W. Hammer, U.-G. Meißner, Phys. Lett. B. 726, 326 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    M.K. Sharma, R.N. Panda, M.K. Sharma, S.K. Patra, Chin. Phys. C. 39, 064102 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    R. Shyam, P. Danielewicz, Phys. Rev. C. 63, 054608 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    V. Guimaraes, J.J. Kolata, D. Bazin, B. Blank, B.A. Brown, T. Glasmacher, P.G. Hansen, R.W. Ibbotson, D. Karnes, V. Maddalena, Phys. Rev. C. 61, 064609 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and AstronomyYunnan UniversityKunmingChina

Personalised recommendations