Few-Body Systems

, 59:48 | Cite as

Entanglement in Spatial Adiabatic Processes for Interacting Atoms

Open Access
Part of the following topical collections:
  1. Critical Stability 2017


We study the dynamics of the non-classical correlations for few atom systems in the presence of strong interactions for a number of recently developed adiabatic state preparation protocols. We show that entanglement can be created in a controlled fashion and can be attributed to two distinct sources, the atom–atom interaction and the distribution of atoms among different traps.



This work was supported by the Okinawa Institute of Science and Technology Graduate University.


  1. 1.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)MathSciNetCrossRefMATHADSGoogle Scholar
  2. 2.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2011)MATHGoogle Scholar
  3. 3.
    T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M. Harlander, W. Hänsel, M. Hennrich, R. Blatt, 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)CrossRefADSGoogle Scholar
  4. 4.
    X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, Observation of eight-photon entanglement. Nat. Photonics 6, 225 (2012)CrossRefADSGoogle Scholar
  5. 5.
    A.N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, S. Jochim, From few to many: observing the formation of a Fermi sea one atom at a time. Science 342, 457 (2013)CrossRefADSGoogle Scholar
  6. 6.
    S. Murmann, A. Bergschneider, V.M. Klinkhamer, G. Zürn, T. Lompe, S. Jochim, Two fermions in a double well: exploring a fundamental building block of the hubbard model. Phys. Rev. Lett. 114, 080402 (2015)CrossRefADSGoogle Scholar
  7. 7.
    S. Kokkelmans, Feshbach Resonances in Ultracold Gases, in Quantum Gas Experiments, vol. 4 (Imperial College Press, London, 2014), p. 63Google Scholar
  8. 8.
    R. Menchon-Enrich, A. Benseny, V. Ahufinger, A.D. Greentree, Th Busch, J. Mompart, Spatial adiabatic passage: a review of recent progress. Rep. Prog. Phys. 79, 074401 (2016)CrossRefADSGoogle Scholar
  9. 9.
    A. Benseny, J. Gillet, Th Busch, Spatial adiabatic passage via interaction-induced band separation. Phys. Rev. A 93, 033629 (2016)CrossRefADSGoogle Scholar
  10. 10.
    I. Reshodko, A. Benseny, Th Busch, Robust boson dispenser: quantum state preparation in interacting many-particle systems. Phys. Rev. A 96, 023606 (2017)CrossRefADSGoogle Scholar
  11. 11.
    M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938 (1998)CrossRefADSGoogle Scholar
  12. 12.
    Th Busch, B.-G. Englert, K. Rzazewski, M. Wilkens, Two cold atoms in a harmonic trap. Found. Phys. 28, 549 (1998)CrossRefGoogle Scholar
  13. 13.
    S. Taie, T. Ichinose, H. Ozawa, Y. Takahashi, Spatial adiabatic passage of massive quantum particles, arXiv:1708.01100 [cond-mat.quant-gas]
  14. 14.
    K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, J. Mompart, Three-level atom optics via the tunneling interaction. Phys. Rev. A 70, 023606 (2014)CrossRefADSGoogle Scholar
  15. 15.
    N.V. Vitanov, A.A. Rangelov, B.W. Shore, K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017)CrossRefADSGoogle Scholar
  16. 16.
    I. Afek, O. Ambar, Y. Silberberg, High-NOON states by mixing quantum and classical light. Science 328, 879 (2010)MathSciNetCrossRefMATHADSGoogle Scholar
  17. 17.
    H. Lee, P. Kok, J.P. Dowling, A quantum Rosetta stone for interferometry. J. Mod. Opt. 49, 2325 (2002)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker Denschlag, A.J. Daley, A. Kantian, H.P. Büchler, P. Zoller, Repulsively bound atom pairs in an optical lattice. Nature 441, 853 (2006)CrossRefADSGoogle Scholar
  19. 19.
    G. Mazzarella, S.M. Giampaolo, F. Illuminati, Extended Bose–Hubbard model of interacting bosonic atoms in optical lattices: from superfluidity to density waves. Phys. Rev. A 73, 013625 (2006)CrossRefADSGoogle Scholar
  20. 20.
    U. Bissbort, F. Deuretzbacher, W. Hofstetter, Effective multibody-induced tunnelling and interactions in the Bose–Hubbard model of the lowest dressed band of an optical lattice. Phys. Rev. A 86, 023617 (2012)CrossRefADSGoogle Scholar
  21. 21.
    D.-S. Lühmann, O. Jürgensen, K. Sengstock, Multi-orbital and density-induced tunnelling of bosons in optical lattices. New J. Phys. 14, 033021 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Maik, P. Hauke, O. Dutta, M. Lewenstein, J. Zakrzewski, Density-dependent tunnelling in the extended Bose–Hubbard model. New J. Phys. 15, 113041 (2013)CrossRefADSGoogle Scholar
  23. 23.
    W. Ganczarek, M. Modugno, G. Pettini, J. Zakrzewski, Wannier functions for one-dimensional \(s\)-\(p\) optical superlattices. Phys. Rev. A 90, 033621 (2014)CrossRefGoogle Scholar
  24. 24.
    M. Kremer, R. Sachdeva, A. Benseny, Th Busch, Interaction-induced effects on Bose–Hubbard parameters. Phys. Rev. A 96, 063611 (2017)CrossRefADSGoogle Scholar
  25. 25.
    D.S. Murphy, J.F. McCann, J. Goold, Th Busch, Boson pairs in a one-dimensional split trap. Phys. Rev. A 76, 053616 (2007)CrossRefADSGoogle Scholar
  26. 26.
    T. Fogarty, Th Busch, J. Goold, M. Paternostro, Non-locality of two ultracold trapped atoms New. J. Phys. 13, 023016 (2011)Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Quantum Systems UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan

Personalised recommendations