Few-Body Systems

, 59:56 | Cite as

Hadron Spectra, Decays and Scattering Properties Within Basis Light Front Quantization

  • James P. Vary
  • Lekha Adhikari
  • Guangyao Chen
  • Shaoyang Jia
  • Meijian Li
  • Yang Li
  • Pieter Maris
  • Wenyang Qian
  • John R. Spence
  • Shuo Tang
  • Kirill Tuchin
  • Anji Yu
  • Xingbo Zhao
Article
  • 24 Downloads
Part of the following topical collections:
  1. Light Cone 2017

Abstract

We survey recent progress in calculating properties of the electron and hadrons within the basis light front quantization (BLFQ) approach. We include applications to electromagnetic and strong scattering processes in relativistic heavy ion collisions. We present an initial investigation into the glueball states by applying BLFQ with multigluon sectors, introducing future research possibilities on multi-quark and multi-gluon systems.

Notes

Acknowledgements

This work was supported by the Department of Energy under Grant Nos. DE-FG02-87ER40371 and DESC000018223 (SciDAC-4/NUCLEI). Computational resources were provided by NERSC, which is supported by the Office of Science of the U.S. DOE under Contract No. DE-AC02-05CH11231. Y. Li is supported in part by US DOE under Grant No. DE-FG02-04ER41302. X. Zhao is supported by new faculty startup funding by the Institute of Modern Physics, Chinese Academy of Sciences. We thank Robert Basili for assistance in creating Table 1.

References

  1. 1.
    J.P. Vary, H. Honkanen, J. Li, P. Maris, S.J. Brodsky, A. Harindranath, G.F. de Teramond, P. Sternberg, E.G. Ng, C. Yang, Hamiltonian light-front field theory in a basis function approach. Phys. Rev. C 81, 035205 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    H. Honkanen, P. Maris, J.P. Vary, S.J. Brodsky, Electron in a transverse harmonic cavity. Phys. Rev. Lett. 106, 061603 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    J.P. Vary, Hamiltonian light-front field theory: recent progress and tantalizing prospects. Few Body Syst. 52, 331 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    X. Zhao, A. Ilderton, P. Maris, J.P. Vary, Non-perturbative quantum time evolution on the light-front. Phys. Lett. B 726, 856 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    X. Zhao, A. Ilderton, P. Maris, J.P. Vary, Scattering in time-dependent basis light-front quantization. Phys. Rev. D 88, 065014 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    J.P. Vary et al., Trends and progress in nuclear and hadron physics: a straight or winding road. Few Body Syst. 58(2), 56 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    B.L.G. Bakker et al., Light-front quantum chromodynamics: a framework for the analysis of hadron physics. Nucl. Phys. Proc. Suppl. 251–252, 165 (2014)CrossRefGoogle Scholar
  8. 8.
    J.R. Hiller, Nonperturbative light-front Hamiltonian methods. Prog. Part. Nucl. Phys. 90, 75 (2016)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S.J. Brodsky, H.-C. Pauli, S. Pinsky, Quantum chromodynamics and other field theories on the light cone. Phys. Rep. 301, 299 (1998)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    B.R. Barrett, P. Navratil, J.P. Vary, Ab initio no core shell model. Prog. Part. Nucl. Phys. 69, 131 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    P. Navratil, J.P. Vary, B.R. Barrett, Properties of \(^{12}\)C in the ab initio nuclear shell model. Phys. Rev. Lett. 84, 5728 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    P. Navratil, J.P. Vary, B.R. Barrett, Large basis ab initio no-core shell model and its application to \(^{12}\)C. Phys. Rev. C 62, 054311 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    P. Maris, J.P. Vary, A.M. Shirokov, Ab initio no-core full configuration calculations of light nuclei. Phys. Rev. C 79, 014308 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Li, P.W. Wiecki, X. Zhao, P. Maris, J.P. Vary, Introduction to Basis Light-Front Quantization Approach to QCD Bound State Problems, in Proceedings of International Conference Nuclear Theory in the Supercomputing Era (NTSE-2013), Ames, IA, USA, May 13–17, 2013, ed. by A.M. Shirokov, A.I. Mazur (Pacific National University, Khabarovsk, Russia, 2014), p. 136Google Scholar
  15. 15.
    P. Maris, P. Wiecki, Y. Li, X. Zhao, J.P. Vary, Bound state calculations in QED and QCD using basis light-front quantization. Acta Phys. Polon. Supp. 6, 321 (2013)CrossRefGoogle Scholar
  16. 16.
    G.F. de Teramond, S.J. Brodsky, Light-front holography: a first approximation to QCD. Phys. Rev. Lett. 102, 081601 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    S.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Light-front holographic QCD and emerging confinement. Phys. Rep. 584, 1 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    X. Zhao, H. Honkanen, P. Maris, J.P. Vary, S.J. Brodsky, Electron g-2 in light-front quantization. Phys. Lett. B 737, 65 (2014)ADSCrossRefMATHGoogle Scholar
  19. 19.
    P. Wiecki, Y. Li, X. Zhao, P. Maris, J .P. Vary, Basis light-front quantization approach to positronium. Phys. Rev. D 91(10), 105009 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    S. Tang et al., Electron form factors in basis light-front quantization, in preparationGoogle Scholar
  21. 21.
    Y. Li, P. Maris, X. Zhao, J.P. Vary, Heavy quarkonium in a holographic basis. Phys. Letts. B 758, 118 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Li, P. Maris, J .P. Vary, Quarkonium as a relativistic bound state on the light front. Phys. Rev. D 96(1), 016022 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    M. Li et al., Radiative transitions between \(0^{-+}\) and \(1^{--}\) heavy quarkonia on the light front. arXiv:1803.11519
  24. 24.
    S. Tang et al., \(B_c\) and its properties on the light front, in preparationGoogle Scholar
  25. 25.
    W. Qian et al. Light mesons in a light-front model, in preparationGoogle Scholar
  26. 26.
    A. Yu et al., Baryons in a light front solvable model, in preparationGoogle Scholar
  27. 27.
    G. Chen, X. Zhao, Y. Li, K. Tuchin, J .P. Vary, Particle distribution in intense fields in a light-front Hamiltonian approach. Phys. Rev. D 95(9), 096012 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    M. Li et al., Quark jet propagation in a color glass condensate, in preparationGoogle Scholar
  29. 29.
    X. Zhao, Advances in basis light-front quantization. Few Body Syst. 56(257), 6-9 (2015)Google Scholar
  30. 30.
    X. Zhao, Non-perturbative renormalization approach to hamiltonian light-front field theory, invited talk at this meetingGoogle Scholar
  31. 31.
    S.J. Brodsky, D.S. Hwang, B.Q. Ma, I. Schmidt, Light cone representation of the spin and orbital angular momentum of relativistic composite systems. Nucl. Phys. B 593, 311 (2001)ADSCrossRefMATHGoogle Scholar
  32. 32.
    S.D. Głazek, Similarity flow of a neutral scalar coupled to a fixed source. Acta Phys. Polon. B 42, 1933 (2011)CrossRefGoogle Scholar
  33. 33.
    A.P. Trawiński, S.D. Głazek, S.J. Brodsky, G.F. de Téramond, H.G. Dosch, Effective confining potentials for QCD. Phys. Rev. D 90, 074017 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    S.S. Chabysheva, J.R. Hiller, Dynamical model for longitudinal wave functions in light-front holographic QCD. Ann. Phys. 337, 143–152 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    L. Adhikari et al., Form factors and generalized parton distributions of heavy quarkonia in basis light front quantization, in preparationGoogle Scholar
  36. 36.
    S.J. Brodsky, M. Diehl, D.S. Hwang, Light-cone wavefunction representation of deeply virtual compton scattering. Nucl. Phys. B 596, 99–124 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    T. Frederico, E. Pace, B. Pasquini, G. Salme, Pion generalized parton distributions with covariant and light-front constituent quark models. Phys. Rev. D 80, 054021 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    M. Diehl, Generalized parton distributions. Phys. Rep. 388, 41 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    S.J. Brodsky, G.F. de Teramond, Light-front dynamics and AdS/QCD correspondence: the pion form factor in the space- and time-like regions. Phys. Rev. D 77, 056007 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    L. Adhikari, Y. Li, X. Zhao, P. Maris, J.P. Vary, A.A. El-Hady, Form factors and generalized parton distributions in basis light-front quantization. Phys. Rev. C 93, 055202 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    J.P. Vary, L. Adhikari, G. Chen, Y. Li, P. Maris, X. Zhao, Basis light-front quantization: recent progress and future prospects. Few Body Syst. 57(8), 695 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    M. Burkardt, Impact parameter dependent parton distributions and off forward parton distributions for \(\zeta \rightarrow 0\). Phys. Rev. D 62, 071503 (2000). Erratum:ibid 66, 119903(E) (2002)Google Scholar
  43. 43.
    C. Patrignani et al., Particle data group. Review of particle physics. Chin. Phys. C 40(10), 100001 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    J.J. Dudek, R.G. Edwards, D.G. Richards, Radiative transitions in charmonium from lattice QCD. Phys. Rev. D 73, 074507 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    J.J. Dudek, R. Edwards, C.E. Thomas, Exotic and excited-state radiative transitions in charmonium from lattice QCD. Phys. Rev. D 79, 094504 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    D. Bec̆irević, M. Kruse, F. Sanfilippo, Lattice QCD estimate of the \(\eta _{\rm c}\)(2S) \(\rightarrow {\rm J}/\psi \gamma \) decay rate. JHEP 1505, 014 (2015)Google Scholar
  47. 47.
    C. Hughes, R.J. Dowdall, C.T.H. Davies, R.R. Horgan, G. von Hippel, M. Wingate, Hindered M1 radiative decay of \(\Upsilon (2S)\) from lattice NRQCD. Phys. Rev. D 92, 094501 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    D. Ebert, R.N. Faustov, V.O. Galkin, Properties of heavy quarkonia and \(B_c\) mesons in the relativistic quark model. Phys. Rev. D 67, 014027 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    J.R. Spence, J.P. Vary, Variational tamm-dancoff treatment of quantum chromodynamics II: a semi-analytic treatment of the hadrons in the valence quark approximation. Phys. Rev. C 59, 1762 (1999)ADSCrossRefGoogle Scholar
  50. 50.
    I.F. Allison et al., [HPQCD and Fermilab lattice and UKQCD collaborations], Mass of the \(B_c\) meson in three-flavor lattice QCD. Phys. Rev. Lett. 94, 172001 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    A.A. El-Hady, M.A.K. Lodhi, J.P. Vary, B(c) mesons in a Bethe–Salpeter model. Phys. Rev. D 59, 094001 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    H.M. Choi, C.R. Ji, Semileptonic and radiative decays of the B(c) meson in light-front quark model. Phys. Rev. D 80, 054016 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    B. Colquhoun et al., [HPQCD Collaboration], B-meson decay constants: a more complete picture from full lattice QCD. Phys. Rev. D 91(11), 114509 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    J. Koponen, A.C. Zimermmane-Santos, C.T.H. Davies, G.P. Lepage, A .T. Lytle, Pseudoscalar meson electromagnetic form factor at high \(Q^2\) from full lattice QCD. Phys. Rev. D 96(5), 054501 (2017)ADSCrossRefGoogle Scholar
  55. 55.
    S.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Light-front holographic QCD and emerging confinement. Phys. Rep. 584, 1 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    F. Borkowski, P. Peuser, G.G. Simon, V.H. Walther, R.D. Wendling, Electromagnetic form-factors of the proton at low four-momentum transfer. Nucl. Phys. B 93, 461 (1975)ADSCrossRefGoogle Scholar
  57. 57.
    J.J. Murphy, Y.M. Shin, D.M.Skopik, Proton form factor from 0.15 to 0.79 fm-2. Phys. Rev. C 9, 2125 (1974). Erratum: [Phys. Rev. C 10, 2111 (1974)]Google Scholar
  58. 58.
    C. Berger, V. Burkert, G. Knop, B. Langenbeck, K. Rith, Phys. Lett. 35B, 87 (1971)ADSCrossRefGoogle Scholar
  59. 59.
    K. Tuchin, Particle production in strong electromagnetic fields in relativistic heavy-ion collisions. Adv. High Energy Phys. 2013, 490495 (2013)MathSciNetCrossRefGoogle Scholar
  60. 60.
    L.D. McLerran, R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei. Phys. Rev. D 49, 2233 (1994)ADSCrossRefGoogle Scholar
  61. 61.
    A. Dumitru, J. Jalilian-Marian, Forward quark jets from protons shattering the colored glass. Phys. Rev. Lett. 89, 022301 (2002)ADSCrossRefGoogle Scholar
  62. 62.
    A. Harindranath, J.P. Vary, Solving two-dimensional \(\phi ^4\) theory by discretized light front quantization. Phys. Rev. D 36, 1141 (1987)ADSCrossRefGoogle Scholar
  63. 63.
    A. Harindranath, J.P. Vary, Variational calculation of the spectrum of \(\phi ^4\) in two-dimensions in light front field theory. Phys. Rev. D 37, 3010 (1988)ADSCrossRefGoogle Scholar
  64. 64.
    D. Chakrabarti, A. Harindranath, L. Martinovic, J.P. Vary, Kinks in discrete light cone quantization. Phys. Lett. B 582, 196 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    D. Chakrabarti, A. Harindranath, L. Martinovic, G.B. Pivovarov, J.P. Vary, Ab initio results for the broken phase of scalar light front field theory. Phys. Lett. B 617, 92 (2005)ADSCrossRefGoogle Scholar
  66. 66.
    D. Chakrabarti, A. Harindranath, J.P. Vary, A transition in the spectrum of the topological sector of \(\phi ^4_2\) theory at strong coupling. Phys. Rev. D 71, 125012 (2005)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • James P. Vary
    • 1
  • Lekha Adhikari
    • 1
  • Guangyao Chen
    • 1
  • Shaoyang Jia
    • 1
  • Meijian Li
    • 1
  • Yang Li
    • 2
  • Pieter Maris
    • 1
  • Wenyang Qian
    • 1
  • John R. Spence
    • 1
  • Shuo Tang
    • 1
  • Kirill Tuchin
    • 1
  • Anji Yu
    • 1
  • Xingbo Zhao
    • 1
    • 3
  1. 1.Department of Physics and AstronomyIowa State UniversityAmesUSA
  2. 2.Department of PhysicsCollege of William and MaryWilliamsburgUSA
  3. 3.Institute of Modern Physics, Chinese Academy of SciencesLanzhouChina

Personalised recommendations