Skip to main content
Log in

Multistrange Meson-Baryon Dynamics and Resonance Generation

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this talk I review our recent studies on meson-baryon systems with strangeness \(-\,1\) and \(-\,2\). The motivation of our works is to find resonances generated as a consequence of coupled channel meson-baryon interactions. The coupled channels are all meson-baryon systems formed by combining a pseudoscalar or a vector meson with an octet baryon such that the system has the strange quantum number equal to \(-\,1\) or \(-\,2\). The lowest order meson-baryon interaction amplitudes are obtained from Lagrangians based on the chiral and the hidden local symmetries related to the vector mesons working as the gauge bosons. These lowest order amplitudes are used as an input to solve the Bethe–Salpeter equation and a search for poles is made in the resulting amplitudes, in the complex plane. In case of systems with strangeness \(-\,1\), we find evidence for the existence of some hyperons such as: \(\varLambda (2000)\), \(\varSigma (1750)\), \(\varSigma (1940)\), \(\varSigma (2000)\). More recently, in the study of strangeness \(-\,2\) systems we have found two narrow resonances which can be related to \(\varXi (1690)\) and \(\varXi (2120)\). In this latter work, we have obtained the lowest order amplitudes relativistically as well as in the nonrelativistic approximation to solve the scattering equations. We find that the existence of the poles in the complex plane does not get affected by the computation of the scattering equation with the lowest order amplitudes obtained in the nonrelativistic approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ramos, E. Oset, C. Bennhold, D. Jido, J.A. Oller, U.G. Meissner, Dynamical generation of hyperon resonances. Nucl. Phys. A 754, 202 (2005)

    Article  ADS  Google Scholar 

  2. M.F.M. Lutz, J. Hofmann, Dynamically generated hidden-charm baryon resonances. Int. J. Mod. Phys. A 21, 5496 (2006)

    Article  ADS  Google Scholar 

  3. S. Sarkar, B.X. Sun, E. Oset, M.J. Vicente Vacas, Dynamically generated resonances from the vector octet-baryon decuplet interaction. Eur. Phys. J. A 44, 431 (2010)

    Article  ADS  Google Scholar 

  4. E. Oset et al., Dynamically generated resonances. Prog. Theor. Phys. Suppl. 186, 124 (2010)

    Article  ADS  Google Scholar 

  5. B.-X. Sun, Y.-W. Wang, Vector meson-baryon octet interaction and resonances generated dynamically. Int. J. Mod. Phys. Conf. Ser. 29, 1460211 (2014)

    Article  Google Scholar 

  6. E. Oset, A. Ramos, Dynamically generated resonances from the vector octet-baryon octet interaction. Eur. Phys. J. A 44, 445 (2010)

    Article  ADS  Google Scholar 

  7. T. Hyodo, D. Jido, A. Hosaka, Compositeness of dynamically generated states in a chiral unitary approach. Phys. Rev. C 85, 015201 (2012)

    Article  ADS  MATH  Google Scholar 

  8. K.P. Khemchandani, A. Martinez Torres, E. Oset, The N*(1710) as a resonance in the pi pi N system. Eur. Phys. J. A 37, 233–243 (2008)

    Article  ADS  Google Scholar 

  9. A. Martinez Torres, K.P. Khemchandani, E. Oset, Three body resonances in two meson-one baryon systems. Phys. Rev. C 77, 042203 (2008)

    Article  ADS  Google Scholar 

  10. A. Martinez Torres, K.P. Khemchandani, E. Oset, Solution to Faddeev equations with two-body experimental amplitudes as input and application to \(\text{ J }^{**}\text{ P } = 1/2+\), \(\text{ S } = 0\) baryon resonances. Phys. Rev. C 79, 065207 (2009)

    Article  ADS  Google Scholar 

  11. G. Ecker, Chiral perturbation theory. Prog. Part. Nucl. Phys. 35, 1 (1995)

    Article  ADS  Google Scholar 

  12. A. Pich, Chiral perturbation theory. Rep. Prog. Phys. 58, 563 (1995)

    Article  ADS  Google Scholar 

  13. E. Oset, A. Ramos, Non perturbative chiral approach to s-wave anti-K N interactions. Nucl. Phys. A 635, 99–120 (1998)

    Article  ADS  Google Scholar 

  14. M. Bando, T. Kugo, K. Yamawaki, Nonlinear Realization and Hidden Local Symmetries. Phys. Rept. 164, 217 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Bando, T. Kugo, K. Yamawaki, On the vector mesons as dynamical gauge bosons of hidden local symmetries. Nucl. Phys. B 259, 493 (1985)

    Article  ADS  Google Scholar 

  16. K.P. Khemchandani, H. Kaneko, H. Nagahiro, A. Hosaka, Vector meson-Baryon dynamics and generation of resonances. Phys. Rev. D 83, 114041 (2011)

    Article  ADS  Google Scholar 

  17. K.P. Khemchandani, A. Martinez Torres, H. Kaneko, H. Nagahiro, A. Hosaka, Coupling vector and pseudoscalar mesons to study baryon resonances. Phys. Rev. D 84, 094018 (2011)

    Article  ADS  Google Scholar 

  18. C. Patrignani et al., Particle data group. Chin. Phys. C 40, 100001 (2016)

    Article  ADS  Google Scholar 

  19. L. Guo et al., Cascade production in the reactions gamma p –> K+ K+ (X) and gamma p –> K+ K+ pi- (X). Phys. Rev. C 76, 025208 (2007)

    Article  ADS  Google Scholar 

  20. R. Schumacher, CLAS Collaboration, Strangeness physics with CLAS at Jefferson lab. AIP Conf. Proc. 1257, 100 (2010)

  21. T. Nagae, The J-PARC project. Nucl. Phys. A 805, 486 (2008)

    Article  ADS  Google Scholar 

  22. M.F.M. Lutz et al. [PANDA Collaboration], Physics performance report for PANDA: strong interaction studies with antiprotons. arXiv:0903.3905 [hep-ex]

  23. K. Abe et al., [Belle Collaboration], Observation of Cabibbo suppressed and W exchange Lambda+(c) baryon decays. Phys. Lett. B 524, 33 (2002)

  24. B. Aubert et al., [BaBar Collaboration], Measurement of the spin of the Xi(1530) resonance, Phys. Rev. D 78, 034008 (2008)

  25. B. Aubert et al., [BaBar Collaboration], Measurement of the mass and width and study of the spin of the \(\varXi (1690)\) 0 resonance from \(\varLambda ^+_{c} \rightarrow \varLambda \bar{K}^0 K^{+}\) decay at Babar, hep-ex/0607043

  26. J.A. Oller, E. Oset, Chiral symmetry amplitudes in the S wave isoscalar and isovector channels and the sigma, f0(980), a0(980) scalar mesons,” Nucl. Phys. A 620, 438 (1997) [Erratum-ibid. A 652, 407 (1999)]

  27. E.E. Jenkins, M.E. Luke, A.V. Manohar, M.J. Savage, Chiral perturbation theory analysis of the baryon magnetic moments. Phys. Lett. B 302, 482–490 (1993)

    Article  ADS  Google Scholar 

  28. U.-G. Meissner, S. Steininger, Baryon magnetic moments in chiral perturbation theory. Nucl. Phys. B 499, 349–367 (1997)

    Article  ADS  Google Scholar 

  29. D. Jido, A. Hosaka, J.C. Nacher, E. Oset, A. Ramos, Magnetic moments of the Lambda(1405) and Lambda(1670) resonances. Phys. Rev. C 66, 025203 (2002)

    Article  ADS  Google Scholar 

  30. K.P. Khemchandani, A. Martinez Torres, H. Nagahiro, A. Hosaka, Phys. Rev. D 85, 114020 (2012)

    Article  ADS  Google Scholar 

  31. K.P. Khemchandani, A. Martinez Torres, A. Hosaka, H. Nagahiro, F.S. Navarra, M. Nielsen, Why \(\varXi (1690)\) and \(\varXi (2120)\) are so narrow? Phys. Rev. D 97, 034005 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Khemchandani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khemchandani, K.P., Martínez Torres, A., Hosaka, A. et al. Multistrange Meson-Baryon Dynamics and Resonance Generation. Few-Body Syst 59, 29 (2018). https://doi.org/10.1007/s00601-018-1338-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-018-1338-2

Navigation