Few-Body Systems

, 58:152 | Cite as

Benchmark Calculation of Radial Expectation Value \(\varvec{\langle r^{-2} \rangle }\) for Confined Hydrogen-Like Atoms and Isotropic Harmonic Oscillators

  • Rong Mei Yu
  • Li Rong Zan
  • Li Guang JiaoEmail author
  • Yew Kam Ho


Spatially confined atoms have been extensively investigated to model atomic systems in extreme pressures. For the simplest hydrogen-like atoms and isotropic harmonic oscillators, numerous physical quantities have been established with very high accuracy. However, the expectation value of \(\langle r^{-2} \rangle \) which is of practical importance in many applications has significant discrepancies among calculations by different methods. In this work we employed the basis expansion method with cut-off Slater-type orbitals to investigate these two confined systems. Accurate values for several low-lying bound states were obtained by carefully examining the convergence with respect to the size of basis. A scaling law for \(\langle r^{n} \rangle \) was derived and it is used to verify the accuracy of numerical results. Comparison with other calculations show that the present results establish benchmark values for this quantity, which may be useful in future studies.


  1. 1.
    A. Michels, J. De Boer, A. Bijl, Remarks concerning molecural interaction and their influence on the polarisability. Physica 4, 981 (1937)ADSCrossRefGoogle Scholar
  2. 2.
    W. Jaskólski, Confined many-electron systems. Phys. Rep. 271, 1 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    A.L. Buchachenko, Compressed atoms. J. Phys. Chem. B 105, 5839 (2001)CrossRefGoogle Scholar
  4. 4.
    V.K. Dolmatov, A.S. Baltenkov, J.P. Connerade, S.T. Manson, Structure and photoionization of confined atoms. Radiat. Phys. Chem. 70, 417 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    J.R. Sabin, E. Brändas, S.A. Cruz (eds.), Advances in Quantum Chemistry: Theory of Confined Quantum Systems, vol. 57, 58 (Academic Press, New York, 2009)Google Scholar
  6. 6.
    K.D. Sen (ed.), Electronic Structure of Quantum Confined Atoms and Molecules (Springer, Cham, 2014)zbMATHGoogle Scholar
  7. 7.
    T. Guillot, A comparison of the interiors of jupiter and saturn. Plan. Space Sci. 47, 1183 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    B. Saha, P.K. Mukherjee, G.H.F. Diercksen, Energy levels and structural properties of compressed hydrogen atom under debye screening. Astron. Astrophys. 396, 337 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    D.S. Chuu, C.M. Hsiao, W.N. Mei, Hydrogenic impurity states in quantum dots and quantum wires. Phys. Rev. B 46, 3898 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    N. Porras-Montenegro, S.T. Pérez-Merchancano, Hydrogenic impurities in GaAs-(Ga, Al)As quantum dots. Phys. Rev. B 46, 9780 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    I. Bloch, Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23 (2005)CrossRefGoogle Scholar
  12. 12.
    B. Sun, D.L. Zhou, L. You, Entanglement between two interacting atoms in a one-dimensional harmonic trap. Phys. Rev. A 73, 012336 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    F.M. Fernández, E.A. Castro, Hypervirial treatment of multidimensional isotropic bounded oscillators. Phys. Rev. A 24, 2883 (1981)ADSCrossRefGoogle Scholar
  14. 14.
    H.E. Montgomery, G. Campoy, N. Aquino, The confined n-dimensional harmonic oscillator revisited. Phys. Scr. 81, 045010 (2010)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    J.L. Marin, S.A. Cruz, On the use of direct variational methods to study confined quantum systems. Am. J. Phys. 59, 931 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    V.C. Aguilera-Navarro, J.F. Gomes, A.H. Zimerman, K. Ley-Koo, On the radius of convergence of rayleigh-schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes. J. Phys. A: Math. Gen. 16, 2943 (1983)ADSCrossRefGoogle Scholar
  17. 17.
    F.A. Serrano, S.H. Dong, Proper quantization rule approach to three-dimensional quantum dots. Int. J. Quantum Chem. 113, 2282 (2013)CrossRefGoogle Scholar
  18. 18.
    N. Aquino, The isotropic bounded oscillators. J. Phys. A: Math. Gen. 30, 2403 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    N. Aquino, G. Campoy, H.E. Montgomery, Highly accurate solutions for the confined hydrogen atom. Int. J. Quantum Chem. 107, 1548 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    N. Aquino, R.A. Rojas, The confined hydrogen atom: a linear variational approach. Eur. J. Phys. 37, 015401 (2016)CrossRefzbMATHGoogle Scholar
  21. 21.
    S. Goldman, C. Joslin, Spectroscopic properties of an isotropically compressed hydrogen atom. J. Phys. Chem. 96, 6021 (1992)CrossRefGoogle Scholar
  22. 22.
    E.D. Filho, R.M. Ricotta, Supersymmetric variational energies for the confined coulomb system. Phys. Lett. A 299, 137 (2002)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    C. Laughlin, B.L. Burrows, M. Cohen, A hydrogen-like atom confined within an impenetrable spherical box. J. Phys. B: At. Mol. Opt. Phys. 35, 701 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    B.L. Burrows, M. Cohen, Exact solutions for perturbed confined hydrogen atoms: Polarizabilities and nuclear shielding factors. Phys. Rev. A 72, 032508 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    K.D. Sen, A.K. Roy, Studies on the 3d confined potentials using generalized pseudospectral approach. Phys. Lett. A 357, 112 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    A.K. Roy, Confinement in 3d polynomial oscillators through a generalized pseudospectral method. Mod. Phys. Lett. A 29, 1450104 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    A.K. Roy, Spherical confinement of coulombic systems inside an impenetrable box: H atom and the hulthén potential. Int. J. Quantum Chem. 115, 937 (2015)CrossRefGoogle Scholar
  28. 28.
    L. Stevanović, Oscillator strengths of the transitions in a spherically confined hydrogen atom. J. Phys. B: At. Mol. Opt. Phys. 43, 165002 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    R. Cabrera-Trujillo, S.A. Cruz, Confinement approach to pressure effects on the dipole and the generalized oscillator strength of atomic hydrogen. Phys. Rev. A 87, 012502 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    J.G. Kirkwood, Polarizabilities, susceptibilities and van der waals forces of atoms with several electrons. Phys. Z 33, 57 (1932)Google Scholar
  31. 31.
    R.A. Buckingham, Quantum theory of atomic polarization. I. Polarization by a uniform field. Proc. R. Soc. Lond. Ser. A 160, 94 (1937)ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    D. Suryanarayana, J.A. Weil, On the hyperfine splitting of the hydrogen atom in a spherical box. J. Chem. Phys. 64, 510 (1976)ADSCrossRefGoogle Scholar
  33. 33.
    E. LeyKoo, S. Rubinstein, The hydrogen atom within spherical boxes with penetrable walls. J. Chem. Phys. 71, 351 (1979)ADSCrossRefGoogle Scholar
  34. 34.
    N. Aquino, Accurate energy eigenvalues for enclosed hydrogen atom within spheric a1 impenetrable boxes. Int. J. Quantum Chem. 54, 107 (1995)CrossRefGoogle Scholar
  35. 35.
    J.S. Dehesa, S. López-Rosa, B. Olmos, R.J. Yáñez, Information measures of hydrogenic systems, laguerre polynomials and spherical harmonics. J. Comput. Appl. Math. 179, 185 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    J.S. Dehesa, S. López-Rosa, A. Martínez-Finkelshtein, R.J. Yáñez, Information theory of D-dimensional hydrogenic systems: application to circular and rydberg states. Int. J. Quantum Chem. 110, 1529 (2010)Google Scholar
  37. 37.
    L.G. Jiao, L.R. Zan, Y.Z. Zhang, Y.K. Ho, Benchmark values of shannon entropy for spherically confined hydrogen atom. Int. J. Quantum Chem. 117, e25375 (2017)CrossRefGoogle Scholar
  38. 38.
    E. Romera, P. Sánchez-Moreno, J.S. Dehesa, The fisher information of single-particle systems with a central potential. Chem. Phys. Lett. 414, 468 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    N. Aquino, A. Flores-Riveros, J.F. Rivas-Silva, Shannon and fisher entropies for a hydrogen atom under soft spherical confinement. Phys. Lett. A 377, 2062 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    D.H. Bailey, Y. Hida, K. Jeyabalan, X.S. Li, B. Thompson, A. Kaiser. An Arbitrary Precision Computation Package. (2002)Google Scholar
  41. 41.
    P.-O. Löwdin, On the nonorthogonality problem. Adv. Quantum. Chem. 5, 185 (1970)ADSCrossRefGoogle Scholar
  42. 42.
    L.G. Jiao, Y.K. Ho, Application of Löwdin’s canonical orthogonalization method to the slater-type orbital configuration-interaction basis set. Int. J. Quantum Chem. 115, 434 (2015)CrossRefGoogle Scholar
  43. 43.
    S.H. Patil, K.D. Sen, N.A. Watson, H.E. Montgomery, Characteristic features of net information measures for constrained coulomb potentials. J. Phys. B: At. Mol. Opt. Phys. 40, 2147 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    S.H. Patil, K.D. Sen, Scaling properties of net information measures for superpositions of power potentials: free and spherically confined cases. Phys. Lett. A 370, 354 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    A.K. Roy, Calculation of the spiked harmonic oscillators through a generalized pseudospectral method. Phys. Lett. A 321, 231 (2004)ADSCrossRefzbMATHGoogle Scholar
  46. 46.
    A.K. Roy, Studies on the bound-state spectrum of hyperbolic potential. Few-Body Syst. 55, 143 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    A.K. Roy, Critical parameters and spherical confinement of h atom in screened coulomb potential. Int. J. Quantum Chem. 116, 953 (2016)CrossRefGoogle Scholar
  48. 48.
    K.D. Sen, Characteristic features of shannon information entropy of confined atoms. J. Chem. Phys. 123, 074110 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    S. López-Rosa, I.V. Toranzo, P. Sánchez-Moreno, J.S. Dehesa, Entropy and complexity analysis of hydrogenic rydberg atoms. J. Math. Phys. 54, 052109 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    K.D. Sen (ed.), Statistical Complexity: Applications in Electronic Structure (Springer, Berlin, 2012)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.College of PhysicsJilin UniversityChangchunPeople’s Republic of China
  2. 2.College of Physics and Electronic EngineeringNanyang Normal UniversityNanyangPeople’s Republic of China
  3. 3.Institute of Atomic and Molecular SciencesAcademia SinicaTaipeiTaiwan, Republic of China

Personalised recommendations