Feasibility Studies for Single Transverse-Spin Asymmetry Measurements at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC)

Abstract

The measurement of Single Transverse-Spin Asymmetries, \(A_N\), for various quarkonium states and Drell–Yan lepton pairs can shed light on the orbital angular momentum of quarks and gluons, a fundamental ingredient of the proton-spin puzzle. The AFTER@LHC proposal combines a unique kinematic coverage and large luminosities thanks to the Large Hadron Collider beams to deliver precise measurements, complementary to the knowledge provided by collider experiments such as at RHIC. In this paper, we report on sensitivity studies for \(J/\psi \), \(\varUpsilon \) and Drell–Yan \(A_N\) done using the performance of LHCb-like or ALICE-like detectors, combined with polarised gaseous hydrogen and helium-3 targets. In particular, such analyses will provide us with new insights and knowledge about transverse-momentum-dependent parton distribution functions for quarks and gluons and on twist-3 collinear matrix elements in the proton and the neutron.

References

  1. 1.

    European Muon Collaboration, J. Ashman et al., A Measurement of the Spin Asymmetry and Determination of the Structure Function g(1) in Deep Inelastic Muon-Proton Scattering, Phys. Lett. B206, 364 (1988)

  2. 2.

    D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang, Global analysis of helicity parton densities and their uncertainties. Phys. Rev. Lett. 101, 072001 (2008). arXiv:0804.0422 [hep-ph]

    ADS  Article  Google Scholar 

  3. 3.

    STAR Collaboration, L. Adamczyk et al., Precision measurement of the longitudinal double-spin asymmetry for inclusive jet production in polarized proton collisions at \(\sqrt{s}=200\) GeV, Phys. Rev. Lett. 115(9), 092002 (2015). arXiv:1405.5134 [hep-ex]

  4. 4.

    COMPASS Collaboration, K. Kurek, A. Szabelski, The Gluon Contribution to the Sivers Effect COMPASS results, J. Phys. Conf. Ser. 678(1), 012055 (2016)

  5. 5.

    C. Adolph et al., First measurement of the Sivers asymmetry for gluons from SIDIS data. arXiv:1701.02453 [hep-ex]

  6. 6.

    Y. Feng, J.-P. Lansberg, J.-X. Wang, Energy dependence of direct-quarkonium production in \(pp\) collisions from fixed-target to LHC energies: complete one-loop analysis. Eur. Phys. J. C 75(7), 313 (2015). arXiv:1504.00317 [hep-ph]

    ADS  Article  Google Scholar 

  7. 7.

    S.J. Brodsky, J.-P. Lansberg, Heavy-quarkonium production in high energy proton–proton collisions at RHIC. Phys. Rev. D 81, 051502 (2010). arXiv:0908.0754 [hep-ph]

    ADS  Article  Google Scholar 

  8. 8.

    J.P. Lansberg, QCD corrections to J/psi polarisation in pp collisions at RHIC. Phys. Lett. B 695, 149–156 (2011). arXiv:1003.4319 [hep-ph]

    ADS  Article  Google Scholar 

  9. 9.

    A. Andronic et al., Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions, Eur. Phys. J. C76(3), 107 (2016). arXiv:1506.03981 [nucl-ex]

  10. 10.

    N. Brambilla et al., Heavy quarkonium: progress, puzzles, and opportunities. Eur. Phys. J. C 71, 1534 (2011). arXiv:1010.5827 [hep-ph]

    ADS  Article  Google Scholar 

  11. 11.

    J. P. Lansberg, \(J/\psi \), \(\psi \)’ and \(\Upsilon \) production at hadron colliders: a Review, Int. J. Mod. Phys. A21, 3857–3916 (2006). arXiv:hep-ph/0602091 [hep-ph]

  12. 12.

    R. M. Godbole, A. Kaushik, A. Misra, V. Rawoot, B. Sonawane, Transverse single spin asymmetry in \(p+p^\uparrow \rightarrow J/\psi +X\). arXiv:1703.01991 [hep-ph]

  13. 13.

    PHENIX Collaboration, A. Adare et al., Measurement of transverse single-spin asymmetries for \(J/\psi \) production in polarized \(p+p\) collisions at \(\sqrt{s} = 200\) GeV, Phys. Rev. D82, 112008 (2010). arXiv:1009.4864 [hep-ex]. [Erratum: Phys. Rev.D86,099904(2012)]

  14. 14.

    D. Boer, Gluon TMDs in quarkonium production. Few Body Syst. 58(2), 32 (2017). arXiv:1611.06089 [hep-ph]

    ADS  Article  Google Scholar 

  15. 15.

    A. Schafer, J. Zhou, Transverse single spin asymmetry in hadronic \(\eta _{c, b}\) production. Phys. Rev. D 88(1), 014008 (2013). arXiv:1302.4600 [hep-ph]

    ADS  Article  Google Scholar 

  16. 16.

    D. Boer, C. Pisano, Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER. Phys. Rev. D 86, 094007 (2012). arXiv:1208.3642 [hep-ph]

    ADS  Article  Google Scholar 

  17. 17.

    F. Yuan, Heavy quarkonium production in single transverse polarized high energy scattering. Phys. Rev. D 78, 014024 (2008). arXiv:0801.4357 [hep-ph]

    ADS  Article  Google Scholar 

  18. 18.

    S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg, Physics opportunities of a fixed-target experiment using the LHC beams. Phys. Rep. 522, 239–255 (2013). arXiv:1202.6585 [hep-ph]

    ADS  Article  Google Scholar 

  19. 19.

    S. Koshkarev, S. Groote, Double quarkonium production at high Feynman-\(x\). Nucl. Phys. B 915, 384–391 (2017). arXiv:1611.08149 [hep-ph]

    ADS  Article  MATH  Google Scholar 

  20. 20.

    A. Signori, Flavor and Evolution Effects in TMD Phenomenology. Ph.D. thesis, Vrije U., Amsterdam, 2016. http://inspirehep.net/record/1493030/files/Thesis-2016-Signori.pdf

  21. 21.

    S. Koshkarev, Production of the doubly heavy baryons, \(B_c\) meson and the Tetra-c-quark at the Fixed-target Experiment at the LHC with double intrinsic heavy approach Acta Physica Polonica B 48(2), 163 (2017)

  22. 22.

    J. P. Lansberg et al., Single-Transverse-Spin-Asymmetry studies with a fixed-target experiment using the LHC beams (AFTER@LHC), PoS DIS2016, 241 (2016). arXiv:1610.05228 [hep-ex]

  23. 23.

    J.-P. Lansberg et al., Physics case for a polarised target for AFTER@LHC, PoS PSTP2015, 042 (2016). arXiv:1602.06857 [nucl-ex]

  24. 24.

    A. Signori, Gluon TMDs in quarkonium production. Few Body Syst. 57(8), 651–655 (2016). arXiv:1602.03405 [hep-ph]

    ADS  Article  Google Scholar 

  25. 25.

    C. Pisano, Momentum imbalance observables as a probe of gluon TMDs, PoS QCDEV2015, 024 (2015). arXiv:1512.08143 [hep-ph]

  26. 26.

    R. Vogt, Gluon shadowing effects on \(J/\psi \) and \(\varUpsilon \) production in p + Pb Collisions at \(\sqrt{s_{NN}}\)= 115 GeV and p + Pb collisions at \(\sqrt{s_{NN}}\)= 72 GeV at AFTER@LHC. Adv. High Energy Phys. 2015, 492302 (2015). arXiv:1510.03976 [hep-ph]

    Article  Google Scholar 

  27. 27.

    Y. Feng, J.-X. Wang, Next-to-leading order differential cross sections for, and production in proton–proton collisions at a fixed-target experiment using the LHC beams. Adv. High Energy Phys. 2015, 726393 (2015). arXiv:1510.05277 [hep-ph]

  28. 28.

    C. Barschel, P. Lenisa, A. Nass, E. Steffens, A gas target internal to the LHC for the study of pp single-spin asymmetries and heavy ion collisions. Adv. High Energy Phys. 2015, 463141 (2015)

    Article  Google Scholar 

  29. 29.

    D. Kikola, Prospects for open heavy flavor measurements in heavy ion and p + a collisions in a fixed-target experiment at the LHC. Adv. High Energy Phys. 2015, 783134 (2015)

    Google Scholar 

  30. 30.

    A.B. Kurepin, N.S. Topilskaya, Quarkonium production and proposal of the new experiments on fixed target at the LHC. Adv. High Energy Phys. 2015, 760840 (2015)

  31. 31.

    K. Zhou, Z. Chen, P. Zhuang, Antishadowing effect on charmonium production at a fixed-target experiment using LHC beams. Adv. High Energy Phys. 2015, 439689 (2015). arXiv:1507.05413 [nucl-th]

    Article  Google Scholar 

  32. 32.

    F. Arleo, S. Peigné, Quarkonium suppression from coherent energy loss in fixed-target experiments using LHC beams. Adv. High Energy Phys. 2015, 961951 (2015). arXiv:1504.07428 [hep-ph]

    Article  Google Scholar 

  33. 33.

    J.-P. Lansberg, H.-S. Shao, Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC). Nucl. Phys. B 900, 273–294 (2015). arXiv:1504.06531 [hep-ph]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    S.J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, R. Vogt, A review of the intrinsic heavy quark content of the nucleon. Adv. High Energy Phys. 2015, 231547 (2015). arXiv:1504.06287 [hep-ph]

    MathSciNet  Article  Google Scholar 

  35. 35.

    L. Massacrier, B. Trzeciak, F. Fleuret, C. Hadjidakis, D. Kikola, J.P. Lansberg, H.S. Shao, Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC). Adv. High Energy Phys. 2015, 986348 (2015). arXiv:1504.05145 [hep-ex]

    Article  Google Scholar 

  36. 36.

    M. Anselmino, U. D’Alesio, S. Melis, Transverse single-spin asymmetries in proton–proton collisions at the AFTER@LHC experiment in a TMD factorisation scheme. Adv. High Energy Phys. 2015, 475040 (2015). arXiv:1504.03791 [hep-ph]

    Article  Google Scholar 

  37. 37.

    J.P. Lansberg, L. Szymanowski, J. Wagner, Lepton-pair production in ultraperipheral collisions at AFTER@LHC. JHEP 09, 087 (2015). arXiv:1504.02733 [hep-ph]

    ADS  Google Scholar 

  38. 38.

    F.A. Ceccopieri, Studies of backward particle production with a fixed-target experiment using the LHC beams. Adv. High Energy Phys. 2015, 652062 (2015). arXiv:1503.05813 [hep-ph]

    Article  Google Scholar 

  39. 39.

    V.P. Goncalves, W.K. Sauter, \(\eta _c\) production in photon-induced interactions at a fixed target experiment at LHC as a probe of the odderon. Phys. Rev. D 91(9), 094014 (2015). arXiv:1503.05112 [hep-ph]

    ADS  Article  Google Scholar 

  40. 40.

    K. Kanazawa, Y. Koike, A. Metz, D. Pitonyak, Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment. Adv. High Energy Phys. 2015, 257934 (2015). arXiv:1502.04021 [hep-ph]

    MathSciNet  Article  Google Scholar 

  41. 41.

    J.P. Lansberg, Back-to-back isolated photon-quarkonium production at the LHC and the transverse-momentum-dependent distributions of the gluons in the proton. Int. J. Mod. Phys. Conf. Ser. 40, 1660015 (2016). arXiv:1502.02263 [hep-ph]

    Article  Google Scholar 

  42. 42.

    L. Massacrier et al., Studies of transverse-momentum-dependent distributions with a fixed-target experiment using the LHC beams (AFTER@LHC). Int. J. Mod. Phys. Conf. Ser. 40(01), 1660107 (2016). arXiv:1502.00984 [nucl-ex]

    Article  Google Scholar 

  43. 43.

    J.P. Lansberg et al., Spin physics and TMD studies at A Fixed-Target ExpeRiment at the LHC (AFTER@LHC). EPJ Web Conf. 85, 02038 (2015). arXiv:1410.1962 [hep-ex]

    Article  Google Scholar 

  44. 44.

    G. Chen, X.-G. Wu, J.-W. Zhang, H.-Y. Han, H.-B. Fu, Hadronic production of \(\Xi _{cc}\) at a fixed-target experiment at the LHC. Phys. Rev. D 89(7), 074020 (2014). arXiv:1401.6269 [hep-ph]

    ADS  Article  Google Scholar 

  45. 45.

    A. Rakotozafindrabe et al., Spin physics at a fixed-target experiment at the LHC (AFTER@LHC). Phys. Part. Nucl. 45, 336–337 (2014). arXiv:1301.5739 [hep-ex]

    Article  Google Scholar 

  46. 46.

    J.P. Lansberg et al., AFTER@LHC: a precision machine to study the interface between particle and nuclear physics. EPJ Web Conf. 66, 11023 (2014). arXiv:1308.5806 [hep-ex]

    Article  Google Scholar 

  47. 47.

    J. P. Lansberg et al., Prospects for a fixed-target experiment at the LHC: AFTER@LHC, PoS ICHEP2012, 547 (2013). arXiv:1212.3450 [hep-ex]

  48. 48.

    C. Lorce et al., Spin and diffractive physics with a Fixed-Target ExpeRiment at the LHC (AFTER@LHC). arXiv:1212.0425 [hep-ex]. [AIP Conf. Proc.1523,149(2012)]

  49. 49.

    A. Rakotozafindrabe et al., Ultra-relativistic heavy-ion physics with AFTER@LHC. Nucl. Phys. A904–905, 957c–960c (2013). arXiv:1211.1294 [nucl-ex]

    Article  Google Scholar 

  50. 50.

    J. P. Lansberg et al., A Fixed-Target ExpeRiment at the LHC (AFTER@LHC) : luminosities, target polarisation and a selection of physics studies, PoSQNP2012, 049 (2012). arXiv:1207.3507 [hep-ex]

  51. 51.

    J.P. Lansberg, S.J. Brodsky, F. Fleuret, C. Hadjidakis, Quarkonium physics at a fixed-target experiment using the LHC beams. Few Body Syst. 53, 11–25 (2012). arXiv:1204.5793 [hep-ph]

    ADS  Article  Google Scholar 

  52. 52.

    T. Liu, B.-Q. Ma, Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER). Eur. Phys. J. C 72, 2037 (2012). arXiv:1203.5579 [hep-ph]

    ADS  Article  Google Scholar 

  53. 53.

    E. Steffens, Estimation of the performance of a HERMES type gas target internal to the LHC. PoS PSTP2015, 019 (2015)

    Google Scholar 

  54. 54.

    D.W. Sivers, Single spin production asymmetries from the hard scattering of point-like constituents. Phys. Rev. D 41, 83 (1990)

    ADS  Article  Google Scholar 

  55. 55.

    S.J. Brodsky, D.S. Hwang, I. Schmidt, Initial state interactions and single spin asymmetries in Drell–Yan processes. Nucl. Phys. B642, 344–356 (2002). arXiv:hep-ph/0206259 [hep-ph]

    ADS  Article  Google Scholar 

  56. 56.

    U. D’Alesio, F. Murgia, Azimuthal and single spin asymmetries in hard scattering processes. Prog. Part. Nucl. Phys. 61, 394–454 (2008). arXiv:0712.4328 [hep-ph]

    ADS  Article  Google Scholar 

  57. 57.

    V. Barone, F. Bradamante, A. Martin, Transverse-spin and transverse-momentum effects in high-energy processes. Prog. Part. Nucl. Phys. 65, 267–333 (2010). arXiv:1011.0909 [hep-ph]

    ADS  Article  Google Scholar 

  58. 58.

    R. Angeles-Martinez et al., Transverse momentum dependent (TMD) parton distribution functions: status and prospects. Acta Phys. Polon. B 46(12), 2501–2534 (2015). arXiv:1507.05267 [hep-ph]

    ADS  Article  Google Scholar 

  59. 59.

    C. Kouvaris, J.-W. Qiu, W. Vogelsang, F. Yuan, Single transverse-spin asymmetry in high transverse momentum pion production in pp collisions. Phys. Rev. D 74, 114013 (2006). arXiv:hep-ph/0609238 [hep-ph]

    ADS  Article  Google Scholar 

  60. 60.

    B.E. Bonner et al., Analyzing power measurement in inclusive pi0 production at high x(f). Phys. Rev. Lett. 61, 1918 (1988)

    ADS  Article  Google Scholar 

  61. 61.

    E704, E581 Collaboration, D. L. Adams et al., Comparison of spin asymmetries and cross sections in \(\pi ^0\) production by 200 GeV polarized anti-protons and protons, Phys. Lett. B261, 201–206 (1991)

  62. 62.

    PHENIX Collaboration, A. Adare et al., Measurement of transverse-single-spin asymmetries for midrapidity and forward-rapidity production of hadrons in polarized p+p collisions at \(\sqrt{s}=\)200 and 62.4 GeV, Phys. Rev. D90(1), 012006 (2014). arXiv:1312.1995 [hep-ex]

  63. 63.

    A. Lesnik, D.M. Schwartz, I. Ambats, E. Hayes, W.T. Meyer, C.E.W. Ward, T.M. Knasel, E.C. Swallow, R. Winston, T.A. Romanowski, Observation of a difference between polarization and analyzing power in Lambda0 production with 6-GeV/c polarized protons. Phys. Rev. Lett. 35, 770 (1975)

    ADS  Article  Google Scholar 

  64. 64.

    G. Bunce et al., \(\Lambda ^0\) hyperon polarization in inclusive production by 300 GeV protons on beryllium. Phys. Rev. Lett. 36, 1113–1116 (1976)

    ADS  Article  Google Scholar 

  65. 65.

    FNAL-E704 Collaboration, D. L. Adams et al., Analyzing power in inclusive \(\pi ^+\) and \(\pi ^-\) production at high x(F) with a 200 GeV polarized proton beam, Phys. Lett. B264, 462–466 (1991)

  66. 66.

    E704, E581 Collaboration, D. L. Adams et al., Large x(F) spin asymmetry in \(\pi ^0\) production by 200 GeV polarized protons, Z. Phys. C56, 181–184 (1992)

  67. 67.

    K. Krueger et al., Large analyzing power in inclusive \(\pi ^\pm \) production at high x(F) with a 22 GeV/c polarized proton beam. Phys. Lett. B 459, 412–416 (1999)

    ADS  Article  Google Scholar 

  68. 68.

    V. Barone, P.G. Ratcliffe, Transverse Spin Physics (World Scientific, River Edge, 2003)

    Book  MATH  Google Scholar 

  69. 69.

    E. Leader, Spin in particle physics. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 15, 1–500 (2011)

    MathSciNet  Google Scholar 

  70. 70.

    F. Pijlman, Single Spin Asymmetries and Gauge Invariance in Hard Scattering Processes. Ph.D. thesis, Vrije U., Amsterdam, 2006. arXiv:hep-ph/0604226 [hep-ph]. http://www.nikhef.nl/pub/services/biblio/theses_pdf/thesis_F_Pijlman.pdf

  71. 71.

    C. J. Bomhof, Azimuthal Spin Asymmetries in Hadronic Processes. Ph.D. thesis, Vrije U., Amsterdam, 2007. http://inspirehep.net/record/761943/files/8060.pdf

  72. 72.

    V. Barone, A. Drago, P.G. Ratcliffe, Transverse polarisation of quarks in hadrons. Phys. Rept. 359, 1–168 (2002). arXiv:hep-ph/0104283 [hep-ph]

    ADS  Article  MATH  Google Scholar 

  73. 73.

    C. Bourrely, J. Soffer, E. Leader, Polarization phenomena in hadronic reactions. Phys. Rept. 59, 95–297 (1980)

    ADS  Article  Google Scholar 

  74. 74.

    M. Anselmino, A. Efremov, E. Leader, The theory and phenomenology of polarized deep inelastic scattering. Phys. Rept.261, 1–124 (1995). arXiv:hep-ph/9501369 [hep-ph]. [Erratum: Phys. Rept.281,399(1997)]

  75. 75.

    Z.-T. Liang, C. Boros, Single spin asymmetries in inclusive high-energy hadron hadron collision processes. Int. J. Mod. Phys. A 15, 927–982 (2000). arXiv:hep-ph/0001330 [hep-ph]

    ADS  Google Scholar 

  76. 76.

    M. Boglione, A. Prokudin, Phenomenology of transverse spin: past, present and future. Eur. Phys. J. A 52(6), 154 (2016). arXiv:1511.06924 [hep-ph]

    ADS  Article  Google Scholar 

  77. 77.

    E.C. Aschenauer, U. D’Alesio, F. Murgia, TMDs and SSAs in hadronic interactions. Eur. Phys. J. A 52(6), 156 (2016). arXiv:1512.05379 [hep-ph]

    ADS  Article  Google Scholar 

  78. 78.

    A. Prokudin, \(A_N\) in inclusive lepton-proton collisions: TMD and twist-3 approaches. EPJ Web Conf. 85, 02028 (2015). arXiv:1410.3867 [hep-ph]

    Article  Google Scholar 

  79. 79.

    A.V. Efremov, O.V. Teryaev, On spin effects in quantum chromodynamics. Sov. J. Nucl. Phys. 36, 140 (1982). [Yad. Fiz.36,242(1982)]

    Google Scholar 

  80. 80.

    J.-W. Qiu, G.F. Sterman, Single transverse spin asymmetries. Phys. Rev. Lett. 67, 2264–2267 (1991)

    ADS  Article  Google Scholar 

  81. 81.

    D.W. Sivers, Hard scattering scaling laws for single spin production asymmetries. Phys. Rev. D 43, 261–263 (1991)

    ADS  Article  Google Scholar 

  82. 82.

    J. Collins, Foundations of perturbative QCD. (Cambridge University Press, 2013). http://www.cambridge.org/de/knowledge/isbn/item5756723

  83. 83.

    M.G. Echevarria, A. Idilbi, I. Scimemi, Factorization theorem for Drell-Yan at low \(q_T\) and transverse momentum distributions on-the-light-cone. JHEP 07, 002 (2012). arXiv:1111.4996 [hep-ph]

    ADS  Article  Google Scholar 

  84. 84.

    M.G. Echevarria, A. Idilbi, I. Scimemi, Soft and collinear factorization and transverse momentum dependent parton distribution functions. Phys. Lett. B 726, 795–801 (2013). arXiv:1211.1947 [hep-ph]

    ADS  Article  MATH  Google Scholar 

  85. 85.

    M.G. Echevarria, A. Idilbi, I. Scimemi, Unified treatment of the QCD evolution of all (un-)polarized transverse momentum dependent functions: collins function as a study case. Phys. Rev. D 90(1), 014003 (2014). arXiv:1402.0869 [hep-ph]

    ADS  Article  Google Scholar 

  86. 86.

    M.G. Echevarria, T. Kasemets, P.J. Mulders, C. Pisano, QCD evolution of (un)polarized gluon TMDPDFs and the Higgs \(q_T\)-distribution. JHEP 07, 158 (2015). arXiv:1502.05354 [hep-ph]

    ADS  Article  Google Scholar 

  87. 87.

    U. D’Alesio, F. Murgia, Parton intrinsic motion in inclusive particle production: unpolarized cross sections, single spin asymmetries and the Sivers effect. Phys. Rev. D 70, 074009 (2004). arXiv:hep-ph/0408092 [hep-ph]

    ADS  Article  Google Scholar 

  88. 88.

    M. Anselmino, M. Boglione, U. D’Alesio, E. Leader, F. Murgia, Parton intrinsic motion: suppression of the Collins mechanism for transverse single spin asymmetries in p(up) p \(->\) pi X. Phys. Rev. D 71, 014002 (2005). arXiv:hep-ph/0408356 [hep-ph]

    ADS  Article  Google Scholar 

  89. 89.

    D. Boer, P.J. Mulders, F. Pijlman, Universality of T odd effects in single spin and azimuthal asymmetries. Nucl. Phys. B 667, 201–241 (2003). arXiv:hep-ph/0303034 [hep-ph]

    ADS  Article  Google Scholar 

  90. 90.

    COMPASS Collaboration, C. Quintans, Future Drell-Yan measurements in COMPASS. J. Phys. Conf. Ser. 295, 012163 (2011)

  91. 91.

    A. Klein, X. Jiang, D. Gessaman, P. Reimer, C. Brown, F. Christian, M. Diefenthaler, J.-C. Peng, W.-C. Chang, Y.-C. Chen et al., Letter of Intent for a Drell-Yan experiment with a polarized proton target, FERMILAB-LOI-2013-01. http://inspirehep.net/record/1240849

  92. 92.

    L.D. Isenhower, T. Hague, R. Towell, S. Watson, C. Aidala, C. Dutta, W. Lorenzon, R. Raymond, Z. Qu, J. Arrington et al, Polarized Drell-Yan measurements with the Fermilab Main Injector, FERMILAB-PROPOSAL-1027. http://inspirehep.net/record/1216817?ln=en

  93. 93.

    J.-W. Qiu, G.F. Sterman, Single transverse spin asymmetries in direct photon production. Nucl. Phys. B 378, 52–78 (1992)

    ADS  Article  Google Scholar 

  94. 94.

    M.G.A. Buffing, A. Mukherjee, P.J. Mulders, Generalized universality of definite rank gluon transverse momentum dependent correlators. Phys. Rev. D 88, 054027 (2013). arXiv:1306.5897 [hep-ph]

    ADS  Article  Google Scholar 

  95. 95.

    D. Boer, C. Lorce, C. Pisano, J. Zhou, The gluon Sivers distribution: status and future prospects. Adv. High Energy Phys. 2015, 371396 (2015). arXiv:1504.04332 [hep-ph]

    MathSciNet  Article  Google Scholar 

  96. 96.

    C. Pisano, D. Boer, S.J. Brodsky, M.G.A. Buffing, P.J. Mulders, Linear polarization of gluons and photons in unpolarized collider experiments. JHEP 10, 024 (2013). arXiv:1307.3417 [hep-ph]

    ADS  Article  Google Scholar 

  97. 97.

    D. Boer, W.J. den Dunnen, TMD evolution and the Higgs transverse momentum distribution. Nucl. Phys. B 886, 421–435 (2014). arXiv:1404.6753 [hep-ph]

    ADS  Article  MATH  Google Scholar 

  98. 98.

    LHCb Collaboration, R. Aaij et al., Measurement of the \(\eta _c (1S)\) production cross-section in proton–proton collisions via the decay \(\eta _c (1S) \rightarrow p \bar{p}\), Eur. Phys. J. C75(7), 311 (2015). arXiv:1409.3612 [hep-ex]

  99. 99.

    LHCb Collaboration, R. Aaij et al., Observation of \(\eta _{c}(2S) \rightarrow p \bar{p}\) and search for \(X(3872) \rightarrow p \bar{p}\) decays. arXiv:1607.06446 [hep-ex]

  100. 100.

    LHCb Collaboration, R. Aaij et al., Measurement of the ratio of prompt \(\chi _{c}\) to \(J/\psi \) production in \(pp\) collisions at \(\sqrt{s}=7\) TeV. Phys. Lett.B718, 431–440 (2012). arXiv:1204.1462 [hep-ex]

  101. 101.

    LHCb Collaboration, R. Aaij et al., Measurement of the cross-section ratio \(\sigma (\chi _{c2})/\sigma (\chi _{c1})\) for prompt \(\chi _c\) production at \(\sqrt{s}=7\) TeV. Phys. Lett.B714, 215–223 (2012). arXiv:1202.1080 [hep-ex]

  102. 102.

    Z.-B. Kang, J.-W. Qiu, W. Vogelsang, F. Yuan, Accessing tri-gluon correlations in the nucleon via the single spin asymmetry in open charm production. Phys. Rev. D 78, 114013 (2008). arXiv:0810.3333 [hep-ph]

    ADS  Article  Google Scholar 

  103. 103.

    X.-D. Ji, Gluon correlations in the transversely polarized nucleon. Phys. Lett. B 289, 137–142 (1992)

    ADS  Article  Google Scholar 

  104. 104.

    H. Beppu, Y. Koike, K. Tanaka, S. Yoshida, Contribution of twist-3 multi-gluon correlation functions to single spin asymmetry in semi-inclusive deep inelastic scattering. Phys. Rev. D 82, 054005 (2010). arXiv:1007.2034 [hep-ph]

    ADS  Article  Google Scholar 

  105. 105.

    W.J. den Dunnen, J.P. Lansberg, C. Pisano, M. Schlegel, Accessing the transverse dynamics and polarization of gluons inside the proton at the LHC. Phys. Rev. Lett. 112, 212001 (2014). arXiv:1401.7611 [hep-ph]

    ADS  Article  Google Scholar 

  106. 106.

    LHCb Collaboration, A. A. Alves, Jr. et al., The LHCb Detector at the LHC, JINST 3, S08005 (2008)

  107. 107.

    ALICE Collaboration, K. Aamodt et al., The ALICE experiment at the CERN LHC. JINST3, S08002 (2008)

  108. 108.

    LHCb Collaboration, R. Aaij et al., Precision luminosity measurements at LHCb. JINST 9(12), P12005 (2014). arXiv:1410.0149 [hep-ex]

  109. 109.

    Technical Design Report for the Muon Forward Tracker, Tech. Rep. CERN-LHCC-2015-001. ALICE-TDR-018, Jan, 2015. https://cds.cern.ch/record/1981898

  110. 110.

    ALICE Collaboration, J. Adam et al., Inclusive quarkonium production at forward rapidity in pp collisions at \(\sqrt{s}=8\) TeV. Eur. Phys. J. C76(4), 184 (2016). arXiv:1509.08258 [hep-ex]

  111. 111.

    NA60 Collaboration, R. Arnaldi et al., Evidence for the production of thermal-like muon pairs with masses above 1-GeV/c**2 in 158-A-GeV Indium–Indium Collisions. Eur. Phys. J. C59, 607–623 (2009). arXiv:0810.3204 [nucl-ex]

  112. 112.

    J.-W. Qiu, M. Schlegel, W. Vogelsang, Probing gluonic spin-orbit correlations in photon pair production. Phys. Rev. Lett. 107, 062001 (2011). arXiv:1103.3861 [hep-ph]

    ADS  Article  Google Scholar 

  113. 113.

    D. Boer, C. Pisano, Impact of gluon polarization on Higgs boson plus jet production at the LHC. Phys. Rev. D 91(7), 074024 (2015). arXiv:1412.5556 [hep-ph]

    ADS  Article  Google Scholar 

  114. 114.

    M.G. Echevarria, A. Idilbi, A. Schaefer, I. Scimemi, Model-independent evolution of transverse momentum dependent distribution functions (TMDs) at NNLL. Eur. Phys. J. C 73(12), 2636 (2013). arXiv:1208.1281 [hep-ph]

    ADS  Article  Google Scholar 

  115. 115.

    E. Steffens, W. Haeberli, Polarized gas targets. Rep. Progress Phys. 66(11), 1887 (2003). http://stacks.iop.org/0034-4885/66/i=11/a=R02

  116. 116.

    R. G. Milner. Private communication

  117. 117.

    CMS, TOTEM Collaboration, S. Chatrchyan et al., Measurement of pseudorapidity distributions of charged particles in proton-proton collisions at \(\sqrt{s}\) = 8 TeV by the CMS and TOTEM experiments. Eur. Phys. J. C74(10), 3053 (2014). arXiv:1405.0722 [hep-ex]

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel Kikoła.

Additional information

This article belongs to the Topical Collection “New Observables in Quarkonium Production”.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kikoła, D., Echevarria, M.G., Hadjidakis, C. et al. Feasibility Studies for Single Transverse-Spin Asymmetry Measurements at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC). Few-Body Syst 58, 139 (2017). https://doi.org/10.1007/s00601-017-1299-x

Download citation