Few-Body Systems

, 58:113

Benchmark Results for Few-Body Hypernuclei

  • F. Ferrari Ruffino
  • D. Lonardoni
  • N. Barnea
  • S. Deflorian
  • W. Leidemann
  • G. Orlandini
  • F. Pederiva
Article
  • 48 Downloads
Part of the following topical collections:
  1. The 23rd European Conference on Few-Body Problems in Physics

Abstract

The Non-Symmetrized Hyperspherical Harmonics method (NSHH) is introduced in the hypernuclear sector and benchmarked with three different ab-initio methods, namely the Auxiliary Field Diffusion Monte Carlo method, the Faddeev–Yakubovsky approach and the Gaussian Expansion Method. Binding energies and hyperon separation energies of three- to five-body hypernuclei are calculated by employing the two-body \(\varLambda \hbox {N}\) component of the phenomenological Bodmer–Usmani potential (Bodmer and Usmani in Nucl Phys A 477:621, 1988; Usmani and Khanna in J Phys G 35:025105, 2008), and a hyperon-nucleon interaction (Hiyama et al. in Phus Rev C 65:011301, 2001) simulating the scattering phase shifts given by NSC97f (Rijken et al. in Phys Rev C 59:21, 1999). The range of applicability of the NSHH method is briefly discussed.

References

  1. 1.
    A.R. Bodmer, Q.N. Usmani, Nucl. Phys. A 477, 621 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    A.A. Usmani, F.C. Khanna, J. Phys. G 35, 025105 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, Phys. Rev. C 65, 011301 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    T.A. Rijken, V.G.J. Stoks, Y. Yamamoto, Phys. Rev. C 59, 21 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    J. Kadyk et al., Nucl. Phys. B 27, 13 (1971)ADSCrossRefGoogle Scholar
  6. 6.
    V.G.J. Stoks et al., Phys. Rev. C 48, 792 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    D. Lonardoni, S. Gandolfi, F. Pederiva, Phys. Rev. C 87, 041303R (2013)ADSCrossRefGoogle Scholar
  8. 8.
    D. Lonardoni, S. Gandolfi, F. Pederiva, Phys. Rev. C 89, 014314 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    S. Gandolfi, F. Pederiva, S. Fantoni, K.E. Schmidt, Phys. Rev. Lett. 99, 022507 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    O. Yakubovsky, Sov. J. Nucl. Phys. 5, 937 (1967)Google Scholar
  11. 11.
    M. Gattobigio, A. Kievsky, M. Viviani, Phys. Rev. C 83, 024001 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    S. Deflorian, N. Barnea, W. Leidemann, G. Orlandini, Few-Body Syst. 54, 1879 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    N. Barnea, W. Leidemann, G. Orlandini, Nucl. Phys. A 693, 565 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    R.B. Wiringa, S.C. Pieper, Phys. Rev. Lett. 89, 182501 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    A. Nogga, (2016), Private Communications Google Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di Trento and INFN, TIFPATrentoItaly
  2. 2.National Superconducting Cyclotron LaboratoryMichigan State UniversityMIUSA
  3. 3.Theoretical DivisionLos Alamos National LaboratoryNMUSA
  4. 4.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations