Advertisement

Few-Body Systems

, 58:91 | Cite as

Application of the Covariant Spectator Theory to the Study of Heavy and Heavy-Light Mesons

  • Sofia LeitãoEmail author
  • Alfred Stadler
  • M. T. Peña
  • Elmar P. Biernat
Article
Part of the following topical collections:
  1. Light Cone 2016

Abstract

As an application of the Covariant Spectator Theory (CST) we calculate the spectrum of heavy-light and heavy-heavy mesons using covariant versions of a linear confining potential, a one-gluon exchange, and a constant interaction. The CST equations possess the correct one-body limit and are therefore well-suited to describe mesons in which one quark is much heavier than the other. We find a good fit to the mass spectrum of heavy-light and heavy-heavy mesons with just three parameters (apart from the quark masses). Remarkably, the fit parameters are nearly unchanged when we fit to experimental pseudoscalar states only or to the whole spectrum. Because pseudoscalar states are insensitive to spin-orbit interactions and do not determine spin-spin interactions separately from central interactions, this result suggests that it is the covariance of the kernel that correctly predicts the spin-dependent quark-antiquark interactions.

Notes

Acknowledgements

This work was supported by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) under contracts SFRH/BD/92637/2013, SFRH/BPD/100578/2014, and UID/FIS/0777/2013.

References

  1. 1.
    Belle Collaboration, S.-K. Choi et al., Phys. Rev. Lett. 91, 262001 (2003)Google Scholar
  2. 2.
    E. Klempt, A. Zaitsev, Phys. Rep. 454, 1 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    N. Brambilla et al., Eur. Phys. J. C 74, 2981 (2014)CrossRefGoogle Scholar
  4. 4.
    Y. Li, P. Maris, X. Zhao, J.P. Vary, Phys. Lett. B 758, 118–124 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    M. Gomez, S. Glazek, Phys. Rev. D 92, 065005 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    F. Gross, Phys. Rev. 186, 1448 (1969)ADSCrossRefGoogle Scholar
  7. 7.
    T. Hilger, C. Popovici, M. Gomez-Rocha, A. Krassnigg, Phys. Rev. D 91, 034013 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S. Fischer, Prog. Part. Nucl. Phys. 91, 1 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    A. Stadler, F. Gross, Few-Body Syst. 49, 91110 (2011)CrossRefGoogle Scholar
  10. 10.
    E.P. Biernat, F. Gross, M.T. Peña, A. Stadler, Phys. Rev. D 89, 016005 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    S. Leitão, A. Stadler, M.T. Peña, E.P. Biernat, Phys. Lett. B 764, 38 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    S. Leitão, A. Stadler, M.T. Peña, E.P. Biernat, Phys. Rev. D 90, 096003 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    E.P. Biernat, M.T. Peña, J.E. Ribeiro, A. Stadler, F. Gross, Phys. Rev. D 90, 096008 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    C.L.E.O. Collaboration, G. Bonvicini et al., Phys. Rev. D 70, 032001 (2004)Google Scholar
  15. 15.
    B.A.B.A.R. Collaboration, P. del Amo Sanchez et al., Phys. Rev. D 82, 111102 (2010)Google Scholar
  16. 16.
    J.R. Spence, J.P. Vary, Phys. Rev. C 47, 1282 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Sofia Leitão
    • 1
    Email author
  • Alfred Stadler
    • 1
    • 2
  • M. T. Peña
    • 1
  • Elmar P. Biernat
    • 1
  1. 1.CFTP, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  2. 2.Departamento de Física da Universidade de ÉvoraÉvoraPortugal

Personalised recommendations