Few-Body Systems

, 58:56 | Cite as

Trends and Progress in Nuclear and Hadron Physics: A Straight or Winding Road

  • James P. Vary
  • Lekha Adhikari
  • Guangyao Chen
  • Meijian Li
  • Yang Li
  • Pieter Maris
  • Wenyang Qian
  • John R. Spence
  • Shuo Tang
  • Kirill Tuchin
  • Xingbo Zhao
Part of the following topical collections:
  1. Light Cone 2016


Quantitative calculations of the properties of hadrons and nuclei, with assessed uncertainties, have emerged as competitive with experimental measurements in a number of major cases. We may well be entering an era where theoretical predictions are critical for experimental progress. Cross-fertilization between the fields of relativistic hadronic structure and non-relativistic nuclear structure is readily apparent. Non-perturbative renormalization methods such as similarity renormalization group and Okubo–Lee–Suzuki schemes as well as many-body methods such as coupled cluster, configuration interaction and lattice simulation methods are now employed and advancing in both major areas of physics. New algorithms to apply these approaches on supercomputers are shared among these areas of physics. The roads to success have intertwined with each community taking the lead at various times in the recent past. We briefly sketch these fascinating paths and comment on some symbiotic relationships. We also overview some recent results from the Hamiltonian basis light-front quantization approach.


  1. 1.
    B.H. Brandow, Linked-cluster expansions for the nuclear many-body problem. Rev. Mod. Phys. 39, 771 (1967)ADSCrossRefGoogle Scholar
  2. 2.
    B.R. Barrett, P. Navratil, J.P. Vary, Ab initio no core shell model. Prog. Part. Nucl. Phys. 69, 131 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    R. Roth, T. Ne, H. Feldmeier, Nuclear structure in the framework of the unitary correlation operator method. Prog. Part. Nucl. Phys. 65, 50 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    P.A.M. Dirac, Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392 (1949)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    S.J. Brodsky, H.-C. Pauli, S. Pinsky, Quantum chromodynamics and other field theories on the light cone. Phys. Rept. 301, 299 (1998)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    S.D. Glazek, K.G. Wilson, Renormalization of hamiltonians. Phys. Rev. D 48, 5863 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    F. Wegner, Flow-equations for hamiltonians. Ann. Phys. 506, 7791 (1994)CrossRefGoogle Scholar
  8. 8.
    S.K. Bogner, R.J. Furnstahl, P. Maris, R.J. Perry, A. Schwenk, J.P. Vary, Convergence in the no-core shell model with low-momentum two-nucleon interactions. Nucl. Phys. A 801, 21 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    F. Coester, Bound states of a many-particle system. Nucl. Phys. 7, 421 (1958)CrossRefGoogle Scholar
  10. 10.
    F. Coester, H. Kuemmel, Short-range correlations in nuclear wave functions. Nucl. Phys. 17, 477 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    H. Kuemmel, A biography of the coupled cluster method. Int. J. Mod. Phys. B 17, 5311 (2003)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D.J. Dean, Coupled-cluster computations of atomic nuclei. Rept. Prog. Phys. 77(9), 096302 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    J.R. Hiller, Nonperturbative light-front hamiltonian methods. Prog. Part. Nucl. Phys. 90, 75 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    J.P. Vary, H. Honkanen, J. Li, P. Maris, S.J. Brodsky, A. Harindranath, G.F. de Teramond, P. Stern-berg, E.G. Ng, C. Yang, Hamiltonian light-front eld theory in a basis function approach. Phys. Rev. C 81, 035205 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    H. Honkanen, P. Maris, J.P. Vary, S.J. Brodsky, Electron in a transverse harmonic cavity. Phys. Rev. Lett. 106, 061603 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Vary, Hamiltonian light-front field theory: recent progress and tantalizing prospects. Few Body Syst. 52, 331 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    X. Zhao, A. Ilderton, P. Maris, J.P. Vary, Non-perturbative quantum time evolution on the light-front. Phys. Lett. B 726, 856 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    X. Zhao, A. Ilderton, P. Maris, J.P. Vary, Scattering in time-dependent basis light-front quantization. Phys. Rev. D 88, 065014 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    B.L.G. Bakker et al., Light-front quantum chromodynamics: a framework for the analysis of hadron physics. Nucl. Phys. Proc. Suppl. 165, 251–252 (2014)Google Scholar
  20. 20.
    S.J. Brodsky, M. Diehl, D.S. Hwang, Light-cone wavefunction representation of deeply virtual compton scattering. Nucl. Phys. B 596, 99–124 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    S. Afanasiev et al., Photoproduction of J/psi and of high mass \(e^+e^-\) in ultra-peripheral \(Au+Au\) collisions at \(s**(1/2) = 200\)-GeV-PHENIX Collaboration. Phys. Lett. B 679, 321–329 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    E. Abbas et al., Charmonium and \(e^+e^-\) pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at \(\sqrt{s_{\rm NN}}\)=2.76 TeV [ALICE Collaboration]. Eur. Phys. J. C 73(11), 2617 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    P. Navratil, J.P. Vary, B.R. Barrett, Properties of \(^{12}\)C in the ab initio nuclear shell model. Phys. Rev. Lett. 84, 5728 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    P. Navratil, J.P. Vary, B.R. Barrett, Large basis ab initio no-core shell model and its application to \(^{12}\)C. Phys. Rev. C 62, 054311 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    P. Maris, J.P. Vary, A.M. Shirokov, Ab initio no-core full configuration calculations of light nuclei. Phys. Rev. C 79, 014308 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Li, P.W. Wiecki, X. Zhao, P. Maris, J.P. Vary, in Introduction to Basis Light-Front Quantization Approach to QCD Bound State Problems, ed. by A.M. Shirokov, A.I. Mazur. Proceedings of International Conference Nuclear Theory in the Supercomputing Era (NTSE-2013), Ames, IA, USA, May 13-17, 2013 (Pacic National University, Khabarovsk, Russia, 2014), p. 136Google Scholar
  27. 27.
    P. Maris, P. Wiecki, Y. Li, X. Zhao, J.P. Vary, Bound state calculations in QED and QCD using basis light-front quantization. Acta Phys. Polon. Supp. 6, 321 (2013)CrossRefGoogle Scholar
  28. 28.
    G.F. de Teramond, S.J. Brodsky, Light-front holography: a first approximation to QCD. Phys. Rev. Lett. 102, 081601 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    S.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Light-front holographic QCD and emerging confinement. Phys. Rept. 584, 1 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    X. Zhao, H. Honkanen, P. Maris, J.P. Vary, S.J. Brodsky, Electron g-2 in light-front quantization. Phys. Lett. B 737, 65 (2014)ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    P. Wiecki, Y. Li, X. Zhao, P. Maris, J.P. Vary, Basis light-front quantization approach to positronium. Phys. Rev. D 91(10), 105009 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    S. Tang, et al., Form factors of the electron (in preparation)Google Scholar
  33. 33.
    W. Qian, et al., Bound states of the Yukawa model (in preparation)Google Scholar
  34. 34.
    Y. Li, P. Maris, X. Zhao, J.P. Vary, Heavy quarkonium in a holographic basis. Phys. Letts. B 758, 118 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    G. Chen, X. Zhao, Y. Li, P. Maris, K. Tuchin, J.P. Vary, Light-front time evolution in intense fields (in preparation)Google Scholar
  36. 36.
    X. Zhao, Advances in basis light-front quantization. Few Body Syst. 56(6–9), 257 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    X. Zhao, Positronium in basis light-front quantization. (invited talk at this meeting)Google Scholar
  38. 38.
    S.J. Brodsky, D.S. Hwang, B.Q. Ma, I. Schmidt, Light cone representation of the spin and orbital angular momentum of relativistic composite systems. Nucl. Phys. B 593, 311 (2001)ADSCrossRefzbMATHGoogle Scholar
  39. 39.
    K.A. Olive et al., (Particle Data Group), Review of particle physics. Chin. Phys. C 38, 090001 (2014). []
  40. 40.
    J.R. Spence, J.P. Vary, Variational tamm-danco treatment of quantum chromodynamics III: a QCD-motivated treatment of meson spectroscopy (in preparation)Google Scholar
  41. 41.
    H. Crater, P. Van Alstine, Relativistic calculation of the meson spectrum: a fully covariant treatment versus standard treatments. Phys. Rev. D 70, 034026 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    S.D. Głazek, Similarity flow of a neutral scalar coupled to a fixed source. Acta Phys. Polon. B 42, 1933 (2011)CrossRefGoogle Scholar
  43. 43.
    A.P. Trawiński, S.D. Głazek, S.J. Brodsky, G.F. de Teramond, H.G. Dosch, Eective confining potentials for QCD. Phys. Rev. D 90, 074017 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    S.S. Chabysheva, J.R. Hiller, Dynamical model for longitudinal wave functions in light-front holo-graphic QCD. Ann. Phys. 337, 143–152 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Li, Quarkonium wave functions on the light-front. [arXiv:1612.01259 [Nucl-th]]; paper in these proceedings
  46. 46.
    T. Frederico, E. Pace, B. Pasquini, G. Salme, Pion generalized parton distributions with covariant and light-front constituent quark models. Phys. Rev. D 80, 054021 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    M. Diehl, Generalized parton distributions. Phys. Rept. 388, 41 (2003)Google Scholar
  48. 48.
    S.J. Brodsky, G.F. de Teramond, Light-front dynamics and AdS/QCD correspondence: the pion form factor in the space- and time-like regions. Phys. Rev. D 77, 056007 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    J.P. Vary, L. Adhikari, G. Chen, Y. Li, P. Maris, X. Zhao, Basis light-front quantization: recent progress and future prospects. Few Body Syst. 57(8), 695 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    L. Adhikari, Y. Li, X. Zhao, P. Maris, J.P. Vary, A.A. El-Hady, Form factors and generalized parton distributions in basis light-front quantization. Phys. Rev. C 93, 055202 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    M. Burkardt, Impact parameter dependent parton distributions and off forward parton distributions for \(\zeta \rightarrow 0\). Phys. Rev. D 62, 071503 (2000); Erratum:ibid. 66, 119903(E) (2002)Google Scholar
  52. 52.
    G. Chen, Y. Li, P. Maris, K. Tuchin, J.P. Vary, Diffractive charmonium spectrum in high energy collisions in the basis light-front quantization approach. [arXiv:1610.04945 [nucl-th]]
  53. 53.
    H. Kowalski, L. Motyka, G. Watt, Exclusive diffractive processes at HERA within the dipole picture. Phys. Rev. D 74, 074016 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    S. Chekanov et al., [ZEUS Collaboration], Exclusive electroproduction of J/psi mesons at HERA. Nucl. Phys. B 695, 3 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    A. Aktas et al., [H1 Collaboration], Elastic \(J/\psi \) production at HERA. Eur. Phys. J. C 46, 585 (2006)CrossRefGoogle Scholar
  56. 56.
    H. Abramowicz et al., [ZEUS Collaboration], Measurement of the cross-section ratio \(\sigma _{\psi (2S)}/ \sigma _{J/\psi (1S)}\) in deep inelastic exclusive ep scattering at HERA. PoS DIS 2015, 078 (2015)Google Scholar
  57. 57.
    L.D. McLerran, R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei. Phys. Rev. D 49, 2233 (1994)ADSCrossRefGoogle Scholar
  58. 58.
    T. Lappi, Wilson line correlator in the MV model: relating the glasma to deep inelastic scattering. Eur. Phys. J. C 55, 285 (2008). [arXiv:0711.3039 [hep-ph]]
  59. 59.
    K. Tuchin, Particle production in strong electromagnetic fields in relativistic heavy-ion collisions. Adv. High Energy Phys. 2013, 490495 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyIowa State UniversityAmesUSA
  2. 2.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina

Personalised recommendations