Few-Body Systems

, 58:81 | Cite as

More About the Light Baryon Spectrum

Article
Part of the following topical collections:
  1. Light Cone 2016

Abstract

We discuss the light baryon spectrum obtained from a recent quark–diquark calculation, implementing non-pointlike diquarks that are self-consistently calculated from their Bethe–Salpeter equations. We examine the orbital angular momentum content in the baryons’ rest frame and highlight the fact that baryons carry all possible values of L compatible with their spin, without the restriction \(P=(-1)^L\) which is only valid nonrelativistically. We furthermore investigate the meaning of complex conjugate eigenvalues of Bethe–Salpeter equations, their possible connection with ‘anomalous’ states, and we propose a method to eliminate them from the spectrum.

References

  1. 1.
    E. Klempt, J.M. Richard, Baryon spectroscopy. Rev. Mod. Phys. 82, 1095 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    L. Tiator, D. Drechsel, S.S. Kamalov, M. Vanderhaeghen, Electromagnetic excitation of nucleon resonances. Eur. Phys. J. Special Top. 198, 141 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    I.G. Aznauryan et al., Studies of nucleon resonance structure in exclusive meson electroproduction. Int. J. Mod. Phys. E 22, 1330015 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    V. Crede, W. Roberts, Progress towards understanding baryon resonances. Rep. Prog. Phys. 76, 076301 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    M. Gockeler et al., Scattering phases for meson and baryon resonances on general moving-frame lattices. Phys. Rev. D 86, 094513 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    D.J. Wilson et al., Coupled \(\pi \pi \), \(K K^-\) scattering in P-wave and the \(\rho \) resonance from lattice QCD. Phys. Rev. D 92(9), 094502 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    C.B. Lang, L. Leskovec, M. Padmanath, S. Prelovsek, Pion-nucleon scattering in the Roper channel from lattice QCD. arXiv:1610.01422 [hep-lat]
  8. 8.
    J.J. Wu, H. Kamano, T.-S.H. Lee, D.B. Leinweber, A.W. Thomas, Nucleon resonance structure in the finite volume of lattice QCD. arXiv:1611.05970 [hep-lat]
  9. 9.
    A. Bashir et al., Collective perspective on advances in Dyson-Schwinger Equation QCD. Commun. Theor. Phys. 58, 79 (2012)CrossRefMATHGoogle Scholar
  10. 10.
    J. Segovia et al., Completing the picture of the Roper resonance. Phys. Rev. Lett. 115(17), 171801 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    G. Eichmann et al., Baryons as relativistic three-quark bound states. Prog. Part. Nucl. Phys. 91, 1 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    G. Eichmann, R. Alkofer, A. Krassnigg, D. Nicmorus, Nucleon mass from a covariant three-quark Faddeev equation. Phys. Rev. Lett. 104, 201601 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    M. Anselmino et al., Diquarks. Rev. Mod. Phys. 65, 1199 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    S.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Light-Front Holographic QCD and Emerging Confinement. Phys. Rep. 584, 1 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    C. Patrignani et al., Review of Particle Physics. Chin. Phys. C 40(10), 100001 (2016). (PDG Collaboration)ADSCrossRefGoogle Scholar
  16. 16.
    G. Eichmann, C.S. Fischer, H. Sanchis-Alepuz, On light baryons and their excitations. Phys. Rev. D 94, 094033 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    G. Eichmann, D. Nicmorus, Nucleon to Delta electromagnetic transition in the Dyson-Schwinger approach. Phys. Rev. D 85, 093004 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    M. Oettel, G. Hellstern, R. Alkofer, H. Reinhardt, Octet and decuplet baryons in a covariant and confining diquark-quark model. Phys. Rev. C 58, 2459 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    W.B. Kaufmann, Numerical solutions of the bethe-salpeter equation. Phys. Rev. 187, 2051 (1969)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    N. Seto, I. Fukui, Scalar scalar ladder model in the unequal mass case. 1: Numerical evidence for the complex eigenvalues. Prog. Theor. Phys. 89, 205 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    S. Ahlig, R. Alkofer, (In) consistencies in the relativistic description of excited states in the Bethe-Salpeter equation. Ann. Phys. 275, 113 (1999)ADSCrossRefMATHGoogle Scholar
  22. 22.
    E. Rojas, B. El-Bennich, J.P.B.C. de Melo, Exciting flavored bound states. Phys. Rev. D 90, 074025 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    B. El-Bennich, G. Krein, E. Rojas, F.E. Serna, Excited hadrons and the analytical structure of bound-state interaction kernels. Few Body Syst. 57(10), 955 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    T. Hilger, A. Krassnigg, Charming quasi-exotic open-flavor mesons. arXiv:1611.04334 [hep-ph]
  25. 25.
    G.C. Wick, Properties of Bethe-Salpeter Wave Functions. Phys. Rev. 96, 1124 (1954)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    R.E. Cutkosky, Solutions of a Bethe-Salpeter equations. Phys. Rev. 96, 1135 (1954)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    N. Nakanishi, A General survey of the theory of the Bethe-Salpeter equation. Prog. Theor. Phys. Suppl. 43, 1 (1969)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    J. Bijtebier, Bethe-Salpeter equation: 3-D reductions, heavy mass limits and abnormal solutions. Nucl. Phys. A 623, 498 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    R. Alkofer, L. von Smekal, The Infrared behavior of QCD Green’s functions: Confinement dynamical symmetry breaking, and hadrons as relativistic bound states. Phys. Rep. 353, 281 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    M.S. Bhagwat et al., Schwinger functions and light-quark bound states. Few Body Syst. 40, 209 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikJustus-Liebig-Universität GiessenGiessenGermany

Personalised recommendations