Few-Body Systems

, Volume 57, Issue 10, pp 965–973 | Cite as

Progress in the Calculation of Nucleon Transition form Factors

Article
Part of the following topical collections:
  1. Nucleon Resonances

Abstract

We give a brief account of the Dyson–Schwinger and Faddeev-equation approach and its application to nucleon resonances and their transition form factors. We compare the three-body with the quark–diquark approach and present a quark–diquark calculation for the low-lying nucleon resonances including scalar, axialvector, pseudoscalar and vector diquarks. We also discuss the timelike structure of transition form factors and highlight the advantages of form factors over helicity amplitudes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klempt, E., Richard, J.-M.: Baryon spectroscopy. Rev. Mod. Phys. 82, 1095 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Tiator, L., et al.: Electromagnetic excitation of nucleon resonances. Eur. Phys. J. Spec. Topics 198, 141 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Aznauryan, I.G., et al.: Studies of nucleon resonance structure in exclusive meson electroproduction. Int. J. Mod. Phys. E22, 1330015 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Aznauryan, I., Burkert, V.: Electroexcitation of nucleon resonances. Prog. Part. Nucl. Phys. 67, 1 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Roberts, C.D., Williams, A.G.: Dyson-Schwinger equations and their application to hadronic physics. Prog. Part. Nucl. Phys. 33, 477 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    Alkofer, R., von Smekal, L.: The Infrared behavior of QCD Green’s functions. Phys. Rep. 353, 281 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fischer, C.S.: Infrared properties of QCD from Dyson–Schwinger equations. J. Phys. G32, R253 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Eichmann, G., Alkofer, R., Krassnigg, A., Nicmorus, D.: Nucleon mass from a covariant three-quark Faddeev equation. Phys. Rev. Lett. 104, 201601 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Sanchis-Alepuz, H., et al.: Delta and Omega masses in a three-quark covariant Faddeev approach. Phys. Rev. D84, 096003 (2011)ADSGoogle Scholar
  10. 10.
    Eichmann, G.: Nucleon electromagnetic form factors from the covariant Faddeev equation. Phys. Rev. D84, 014014 (2011)ADSGoogle Scholar
  11. 11.
    Sanchis-Alepuz, H., Williams, R.: Hadronic observables from Dyson–Schwinger and Bethe–Salpeter equations. J. Phys. Conf. Ser. 631(1), 012064 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Maris, P., Roberts, C.D., Tandy, P.C.: Pion mass and decay constant. Phys. Lett. B420, 267 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Maris, P., Tandy, P.C.: The Quark photon vertex and the pion charge radius. Phys. Rev. C61, 045202 (2000)ADSGoogle Scholar
  14. 14.
    Maris, P., Tandy, P.C.: Bethe–Salpeter study of vector meson masses and decay constants. Phys. Rev. C60, 055214 (1999)ADSGoogle Scholar
  15. 15.
    Sanchis-Alepuz, H., Fischer, C.S.: Octet and Decuplet masses: a covariant three-body Faddeev calculation. Phys. Rev. D90(9), 096001 (2014)ADSGoogle Scholar
  16. 16.
    Alkofer, R., et al.: Electromagnetic baryon form factors in the Poincaré-covariant Faddeev approach. Hyperfine Interact. 234(1), 149 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Sanchis-Alepuz, H., Fischer, C.S.: Hyperon elastic electromagnetic form factors in the space-like momentum region. arXiv:1512.00833 [hep-ph]
  18. 18.
    Oettel, M., Pichowsky, M., von Smekal, L.: Current conservation in the covariant quark diquark model of the nucleon. Eur. Phys. J. A8, 251 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    Maris, P.: Effective masses of diquarks. Few Body Syst. 32, 41 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    Bender, A., Roberts, C.D., Von Smekal, L.: Goldstone theorem and diquark confinement beyond rainbow ladder approximation. Phys. Lett. B380, 7 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    De Sanctis, M., Ferretti, J., Santopinto, E., Vassallo, A.: Electromagnetic form factors in the relativistic interacting quark-diquark model of baryons. Phys. Rev. C84, 055201 (2011)ADSGoogle Scholar
  22. 22.
    Santopinto, E., Ferretti, J.: Strange and nonstrange baryon spectra in the relativistic interacting quark-diquark model with a Gürsey and Radicati-inspired exchange interaction. Phys. Rev. C92(2), 025202 (2015)ADSGoogle Scholar
  23. 23.
    Eichmann, G., Fischer, C.S., Heupel, W.: The light scalar mesons as tetraquarks. Phys. Lett. B753, 282 (2016)CrossRefGoogle Scholar
  24. 24.
    Roberts, H.L., et al.: Masses of ground and excited-state hadrons. Few Body Syst. 51, 1 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Chen, C., et al.: Spectrum of hadrons with strangeness. Few Body Syst. 53, 293 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Oettel, M., Hellstern, G., Alkofer, R., Reinhardt, H.: Octet and decuplet baryons in a covariant and confining diquark-quark model. Phys. Rev. C58, 2459 (1998)ADSGoogle Scholar
  27. 27.
    Cloet, I.C., Eichmann, G., El-Bennich, B., Klahn, T., Roberts, C.D.: Survey of nucleon electromagnetic form factors. Few Body Syst. 46, 1 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Segovia, J., et al.: Completing the picture of the Roper resonance. Phys. Rev. Lett. 115(17), 171801 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Eichmann, G.: Hadron Properties from QCD Bound-State Equations. Ph.D. thesis, University of Graz (2009), arXiv:0909.0703 [hep-ph]
  30. 30.
    Eichmann, G., Cloet, I.C., Alkofer, R., Krassnigg, A., Roberts, C.D.: Toward unifying the description of meson and baryon properties. Phys. Rev. C79, 012202 (2009)ADSGoogle Scholar
  31. 31.
    Eichmann, G., Nicmorus, D.: Nucleon to Delta electromagnetic transition in the Dyson–Schwinger approach. Phys. Rev. D85, 093004 (2012)ADSGoogle Scholar
  32. 32.
    Nicmorus, D., Eichmann, G., Alkofer, R.: Delta and Omega electromagnetic form factors in a Dyson–Schwinger/Bethe–Salpeter approach. Phys. Rev. D82, 114017 (2010)ADSGoogle Scholar
  33. 33.
    Mader, V., et al.: Hadronic decays of mesons and baryons in the Dyson–Schwinger approach. Phys. Rev. D84, 034012 (2011)ADSGoogle Scholar
  34. 34.
    Krassnigg, A.: Survey of \(J=0,1\) mesons in a Bethe–Salpeter approach. Phys. Rev. D80, 114010 (2009)ADSGoogle Scholar
  35. 35.
    Chang, L., Roberts, C.D.: Sketching the Bethe–Salpeter kernel. Phys. Rev. Lett. 103, 081601 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Williams, R., Fischer, C.S., Heupel, W.: Light mesons in QCD and unquenching effects from the 3PI effective action. arXiv:1512.00455 [hep-ph]
  37. 37.
    Olive, K.A., et al.: Review of particle physics. Chin. Phys. C38, 090001 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    Eichmann, G., Ramalho, G.: (In preparation)Google Scholar
  39. 39.
    Ramalho, G., Tsushima, K.: A simple relation between the \(\gamma N\rightarrow N(1535)\) helicity amplitudes. Phys. Rev. D84, 051301 (2011)ADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikJustus-Liebig-Universität GiessenGiessenGermany

Personalised recommendations