Advertisement

Few-Body Systems

, Volume 57, Issue 7, pp 565–571 | Cite as

Two-Dimensional Massless Light Front Fields and Solvable Models

  • L’ubomír Martinovic̆Email author
  • Pierre Grangé
Article
Part of the following topical collections:
  1. Light Cone 2015

Abstract

Quantum field theory formulated in terms of light front (LF) variables has a few attractive as well as some puzzling features. The latter hindered a wider acceptance of LF methods. In two space–time dimensions, it has been a long-standing puzzle how to correctly quantize massless fields, in particular fermions. Here we show that two-dimensional massless LF fields (scalar and fermion) can be recovered in a simple way as limits of the corresponding massive fields and thereby quantized without any loss of physical information. Bosonization of the fermion field then follows in a straightforward manner and the solvable models can be studied directly in the LF theory. We sketch the LF operator solution of the Thirring-Wess model and also point out the closeness of the massless LF fields to those of conformal field theory.

Keywords

Solvable Model Conformal Field Theory Massive Solution Massless Limit Light Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dirac, P.A.M.: Forms od relativistic dynamics. Rev. Mod. Phys. 21, 392 (1949)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dirac, P.A.M.: The mathematical foundations of quantum theory. In: Marlow, A. (ed.) Mathematical Foundation of Quantum Theory. Academic Press, New York (1978). ISBN 978-0-12-473250-6Google Scholar
  3. 3.
    Weinberg, S.: Dynamics at infinite momentum. Phys. Rev. 150, 1313 (1966)ADSCrossRefGoogle Scholar
  4. 4.
    Leutwyler, H.: Current algebra and lightlike charges. Springer Tracts Mod. Phys. 50, 29 (1969)ADSGoogle Scholar
  5. 5.
    Neville, R.A., Rohrlich, F.: Quantum field theory off null planes. Nuovo Cim. A 1, 625 (1971)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Kogut, J.B., Soper, D.E.: Quantum electrodynamics in the infinite momentum frame. Phys. Rev. D 1, 2901 (1971)ADSCrossRefGoogle Scholar
  7. 7.
    Chang, S.-J., Root, R.G., Yan, T.-M.: Quantum field theories in the infinite momentum frame. 1. Quantization of scalar and Dirac fields. Phys. Rev. D 7, 1133 (1973)ADSCrossRefGoogle Scholar
  8. 8.
    Leutwyler, H., Klauder, J.R., Streit, L.: Quantum field theory on light like slabs. Nuovo Cim. A 66, 536 (1970)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Pauli, H.C., Brodsky, S.J.: Solving field theory in one space one time dimension. Phys. Rev. 32, 1993 (1985)ADSMathSciNetGoogle Scholar
  10. 10.
    McCartor, G.: Schwinger model in the light cone representation. Z. Phys. C 64, 349 (1994)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    McCartor, G., Pinsky, S.S., Robertson, D.G.: Vacuum structure of two-dimensional gauge theories on the light front. Phys. Rev. D 56, 1035 (1997)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Martinovic̆, L., Grangé, P.: Solvable models with massless light front fermions. Few Body Syst. 56, 607 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Schwartz, L.: Théorie des distributions. Hermann, Paris (1966)zbMATHGoogle Scholar
  14. 14.
    Martinovic̆, L., Grange, P.: to be publishedGoogle Scholar
  15. 15.
    Grangé, P., Werner, E.: The Taylor–Lagrange scheme as a template for symmetry preserving renormalization procedures. J. Phys. A Math. Theor. 44, 385402 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bergknoff, T.: Physical particles of the massive Schwinger model. Nucl. Phys. B 122, 215 (1977)ADSCrossRefGoogle Scholar
  17. 17.
    Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field Theory, Graduate Texts in Contemporary Physics. Springer, New York (1997)Google Scholar
  18. 18.
    Stone, M.: Bosonization. World Scientific, Singapore (1995)Google Scholar
  19. 19.
    Coleman, S.: The quantum sine-Gordon equation as the massive Thirring model. Phys. Rev. D 11, 2088 (1975)ADSCrossRefGoogle Scholar
  20. 20.
    Mandelstam, S.: Soliton operators for the quantized sine-Gordon equation. Phys. Rev. D 11, 3026 (1975)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Bogoliubov Laboratory of Theoretical PhysicsDubnaRussia
  3. 3.LUPMUniversité Montpellier IIMontpellier Cedex 05France

Personalised recommendations