Few-Body Systems

, Volume 57, Issue 4, pp 275–287 | Cite as

The Role of Spin-Flipping Terms in Hadronic Transitions of \({\Upsilon (4S)}\)

  • Jorge Segovia
  • David R. Entem
  • Francisco Fernández
Article

Abstract

Recent experimental data on the \({\Upsilon(4S)\to\Upsilon(1S)\eta}\) and \({\Upsilon(4S)\to h_{b}(1P)\eta}\) processes seem to contradict the naive expectation that hadronic transitions with spin-flipping terms should be suppressed with respect those without spin-flip. We analyze these transitions using the QCD multipole expansion (QCDME) approach and within a constituent quark model framework that has been applied successfully to the heavy-quark sectors during the last years. The QCDME formalism requires the computation of hybrid intermediate states which has been performed in a natural, parameter-free extension of our constituent quark model based on the quark confining string (QCS) scheme. We show that (i) the M1–M1 contribution in the decay rate of the \({\Upsilon(4S)\to\Upsilon(1S)\eta}\) is important and its suppression until now is not justified; (ii) the role played by the \({L=0}\) hybrid states, which enter in the calculation of the M1–M1 contribution, explains the observed enhancement in the \({\Upsilon(4S)\to\Upsilon(1S)\eta}\) decay width; and (iii) the anomalously large decay rate of the \({\Upsilon(4S)\to h_{b}(1P)\eta}\) transition has the same physical origin.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brambilla N., Eidelman S., Heltsley B., Vogt R., Bodwin G. et al.: Heavy quarkonium: progress, puzzles, and opportunities. Eur. Phys. J. C71, 1534 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Abrams G. et al.: The decay of \({\psi(3700)}\) into \({\psi(3700)}\). Phys. Rev. Lett. 34, 1181 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    Olive K. et al.: Review of particle physics. Part. Data Group Chin. Phys. C38, 090001 (2014)Google Scholar
  4. 4.
    Adachi I. et al.: First observation of the \({P}\)-wave spin-singlet bottomonium states \({h_b(1P)}\) and \({h_b(2P)}\). Belle. Phys. Rev. Lett. 108, 032001 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Aubert B. et al.: Observation of the decay \({B\to J/\psi \eta K}\) and search for \({X(3872) \to J/\psi \eta}\). BaBar. Phys. Rev. Lett. 93, 041801 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Aubert B. et al.: A study of \({B\to X(3872) K}\), with \({X(3872)\to J/\psi\pi^{+} \pi^{-}}\). BaBar. Phys. Rev. D77, 111101 (2008)ADSGoogle Scholar
  7. 7.
    del Amo Sanchez P. et al.: Evidence for the decay \({X(3872)\to J/\psi\omega}\). BaBar. Phys. Rev. D82, 011101 (2010)ADSGoogle Scholar
  8. 8.
    Lees J. et al.: Study of the reaction \({e^{+}e^{-} \to J/\psi\pi^{+} \pi^{-}}\) via initial-state radiation at BaBar. Phys. Rev. D86, 051102 (2012)ADSGoogle Scholar
  9. 9.
    Aubert B. et al.: Study of hadronic transitions between \({\Upsilon}\) states and observation of \({\Upsilon(4S)\to \eta\Upsilon(1S)}\) decay. BaBar. Phys. Rev. D78, 112002 (2008)ADSGoogle Scholar
  10. 10.
    Tamponi, U. et al.: First observation of the hadronic transition \({\Upsilon(4S)\to \eta h_{b}(1P)}\) and new measurement of the \({h_b(1P)}\) and \({\eta_b(1S)}\) parameters. The Belle Collaboration (2015). arXiv:1506.08914 [hep-ex]
  11. 11.
    Meng C., Chao K.-T.: Scalar resonance contributions to the dipion transition rates of \({\Upsilon(4S,5S)}\) in the re-scattering model. Rev. D77, 074003 (2008)Google Scholar
  12. 12.
    Guo F.-K., Hanhart C., Meissner U.-G.: On the extraction of the light quark mass ratio from the decays \({\psi^{\prime} \to J/\psi\pi^{0}(\eta)}\). Phys. Rev. Lett. 103, 082003 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Guo F.-K., Hanhart C., Li G., Meissner U.-G., Zhao Q.: Novel analysis of the decays \({\psi^{\prime} \to h_{c} \pi^{0}}\) and \({eta_{c}^{\prime} \to \chi_{c0} \pi^0}\). Phys. Rev. D82, 034025 (2010)ADSGoogle Scholar
  14. 14.
    Ali A., Hambrock C., Mishima S.: Tetraquark-based analysis and predictions of the cross sections and distributions for the processes \({e^+ e^-\to \Upsilon(1S) (\pi^+ \pi^-, K^+ K^-, \eta \pi^0)}\) near \({\Upsilon(5S)}\). Phys. Rev. Lett. 106, 092002 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Di Giacomo A., Dosch H.G., Shevchenko V.I., Simonov Y.A.: Field correlators in QCD: theory and applications. Phys. Rep. 372, 319 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Simonov Y.A., Veselov A.I.: Single eta production in heavy quarkonia: breakdown of multipole expansion. Phys. Lett. B673, 211 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Segovia J., Entem D.R., Fernandez F.: Puzzles in hadronic transitions of heavy quarkonium with two pion emission. Phys. Rev. D91, 014002 (2015)ADSGoogle Scholar
  18. 18.
    Ke H.-W., Tang J., Hao X.-Q., Li X.-Q.: Analysis on heavy quarkonia transitions with pion emission in terms of the QCD multipole expansion and determination of mass spectra of hybrids. Phys. Rev. D76, 074035 (2007)ADSGoogle Scholar
  19. 19.
    Gottfried K.: Hadronic transitions between quark anti-quark bound states. Phys. Rev. Lett. 40, 598 (1978)ADSCrossRefGoogle Scholar
  20. 20.
    Bhanot G., Fischler W., Rudaz S.: A multipole expansion and the Casimir-Polder effect in quantum chromodynamics. Nucl. Phys. B155, 208 (1979)ADSCrossRefGoogle Scholar
  21. 21.
    Peskin M.E.: Short distance analysis for heavy quark systems. 1. Diagrammatics. Nucl. Phys. B156, 365 (1979)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Bhanot G., Peskin M.E.: Short distance analysis for heavy quark systems. 2. Applications. Nucl. Phys. B156, 391 (1979)ADSCrossRefGoogle Scholar
  23. 23.
    Voloshin M.: On dynamics of heavy quarks in nonperturbative QCD vacuum. Nucl. Phys. B154, 365 (1979)ADSCrossRefGoogle Scholar
  24. 24.
    Voloshin M.B., Zakharov V.I.: Measuring QCD anomalies in hadronic transitions between onium states. Phys. Rev. Lett. 45, 688 (1980)ADSCrossRefGoogle Scholar
  25. 25.
    Yan T.-M.: Hadronic transitions between heavy quark states in quantum chromodynamics. Phys. Rev. D22, 1652 (1980)ADSGoogle Scholar
  26. 26.
    Kuang Y.-P., Yan T.-M.: Predictions for hadronic transitions in the B anti-B system. Phys. Rev. D24, 2874 (1981)ADSGoogle Scholar
  27. 27.
    Kuang Y.-P., Yi Y.-P., Fu B.: Multipole expansion in quantum chromodynamics and the radiative decays \({J/\psi \to \gamma + \eta}\) and \({J/\psi\to \gamma + \pi^0}\). Phys. Rev. D42, 2300 (1990)ADSGoogle Scholar
  28. 28.
    Kuang Y.-P.: QCD multipole expansion and hadronic transitions in heavy quarkonium systems. Front. Phys. China 1, 19 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Juge K., Kuti J., Morningstar C.: Ab initio study of hybrid anti-b g b mesons. Phys. Rev. Lett. 82, 4400 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    Dudek J.J., Rrapaj E.: Charmonium in lattice QCD and the non-relativistic quark-model. Phys. Rev. D78, 094504 (2008)ADSGoogle Scholar
  31. 31.
    Isgur N., Paton J.E.: A flux tube model for hadrons in QCD. Phys. Rev. D31, 2910 (1985)ADSGoogle Scholar
  32. 32.
    Barnes T., Close F., Swanson E.: Hybrid and conventional mesons in the flux tube model: numerical studies and their phenomenological implications. Phys. Rev. D52, 5242 (1995)ADSGoogle Scholar
  33. 33.
    Horn D., Mandula J.: A model of mesons with constituent Gluons. Phys. Rev. D17, 898 (1978)ADSGoogle Scholar
  34. 34.
    Guo P., Szczepaniak A.P., Galata G., Vassallo A., Santopinto E.: Heavy quarkonium hybrids from Coulomb gauge QCD. Phys. Rev. D78, 056003 (2008)ADSGoogle Scholar
  35. 35.
    Tye S.: A Quark-binding string. Phys. Rev. D13, 3416 (1976)ADSGoogle Scholar
  36. 36.
    Giles R., Tye S.: The application of the Quark-confining string to the \({\psi}\) spectroscopy. Phys. Rev. D16, 1079 (1977)ADSGoogle Scholar
  37. 37.
    Buchmuller W., Tye S.: Vibrational states in the \({\Upsilon}\) spectroscopy. Phys. Rev. Lett. 44, 850 (1980)ADSCrossRefGoogle Scholar
  38. 38.
    Buchmuller W., Tye S.H.H.: Quarkonia and quantum chromodynamics. Phys. Rev. D24, 132 (1981)ADSGoogle Scholar
  39. 39.
    Kalashnikova Y., Nefediev A.: Spectra and decays of hybrid charmonia. Phys. Rev. D77, 054025 (2008)ADSGoogle Scholar
  40. 40.
    Brown L.S., Cahn R.N.: Chiral symmetry and \({\psi^{\prime} \to \psi + \pi + \pi}\) decay. Phys. Rev. Lett. 35, 1 (1975)ADSCrossRefGoogle Scholar
  41. 41.
    Vijande J., Fernandez F., Valcarce A.: Constituent quark model study of the meson spectra. Phys. J. G31, 481 (2005)CrossRefGoogle Scholar
  42. 42.
    Valcarce A., Garcilazo H., Fernandez F., Gonzalez P.: Quark-model study of few-baryon systems. Rep. Prog. Phys. 68, 965 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    Segovia J., Entem D.R., Fernandez F., Hernandez E.: Constituent quark model description of charmonium phenomenology. Int. J. Mod. Phys. E22, 1330026 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    Fernandez F., Valcarce A., Gonzalez P., Vento V.: \({p(n,p)n}\) and \({p(p,\Delta^{++})n}\) charge exchange reactions in a constituent quark model. Phys. Lett. B287, 35 (1992)ADSCrossRefGoogle Scholar
  45. 45.
    Garcilazo H., Valcarce A., Fernandez F.: Baryon spectrum in the chiral constituent quark model. Phys. Rev. C63, 035207 (2001)ADSGoogle Scholar
  46. 46.
    Garcilazo H., Valcarce A., Fernandez F.: Effect of higher orbital angular momenta in the baryon spectrum. Phys. Rev. C64, 058201 (2001)ADSGoogle Scholar
  47. 47.
    Vijande J., Garcilazo H., Valcarce A., Fernandez F.: Spectroscopy of doubly charmed baryons. Phys. Rev. D70, 054022 (2004)ADSGoogle Scholar
  48. 48.
    Segovia J., Yasser A., Entem D.R., Fernandez F.: \({J^{PC}=1^{--}}\) hidden charm resonances. Phys. Rev. D78, 114033 (2008)ADSGoogle Scholar
  49. 49.
    Segovia J., Yasser A., Entem D.R., Fernandez F.: \({D_{s1}(2536)^+}\) decays and the properties of \({P}\)-wave charmed strange mesons. Phys. Rev. D80, 054017 (2009)ADSGoogle Scholar
  50. 50.
    Segovia J., Entem D.R., Fernandez F.: Charmed-strange meson spectrum: old and new problems. Phys. Rev. D91, 094020 (2015)ADSGoogle Scholar
  51. 51.
    Segovia J., Entem D.R., Fernandez F.: Charmonium resonances in \({e^+ e^-}\) exclusive reactions around the \({\psi(4415)}\) region. Phys. Rev. D83, 114018 (2011)ADSGoogle Scholar
  52. 52.
    Segovia J., Entem D.R., Fernandez F.: Scaling of the \({^{3}P_{0}}\) strength in heavy meson strong decays. Phys. Lett. B715, 322 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    Segovia J., Entem D.R., Fernandez F.: Strong charmonium decays in a microscopic model. Nucl. Phys. A915, 125 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    Segovia J., Albertus C., Entem D.R., Fernandez F., Hernandez E. et al.: Semileptonic \({B}\) and \({B_{s}}\) decays into orbitally excited charmed mesons. Phys. Rev. D84, 094029 (2011)ADSGoogle Scholar
  55. 55.
    Segovia J., Albertus C., Hernandez E., Fernandez F., Entem D.R.: Nonleptonic \({B\to D^{(*)}D_{sJ}^{(*)}}\) decays and the nature of the orbitally excited charmed-strange mesons. Phys. Rev. D86, 014010 (2012)ADSGoogle Scholar
  56. 56.
    Segovia J., Hernandez E., Fernandez F., Entem D.R.: B decays into radially excited charmed mesons. Phys. Rev. D87, 114009 (2013)ADSGoogle Scholar
  57. 57.
    Segovia J., Entem D., Fernandez F.: Is chiral symmetry restored in the excited meson spectrum? Phys. Lett. B662, 33 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    Bali G.S., Neff H., Duessel T., Lippert T., Schilling K.: Observation of string breaking in QCD. SESAM. Phys. Rev. D71, 114513 (2005)ADSGoogle Scholar
  59. 59.
    Segovia, J., Ortega, P.G., Entem, D.R., Fernández F.: Bottomonium spectrum revisited. (2016). arXiv:1601.05093 [hep-ph]
  60. 60.
    Eichten E., Gottfried K., Kinoshita T., Lane K., Yan T.-M.: Charmonium: the model. Phys. Rev. D17, 3090 (1978)ADSGoogle Scholar
  61. 61.
    Eichten E., Gottfried K., Kinoshita T., Lane K., Yan T.-M.: Charmonium: comparison with experiment. Phys. Rev. D21, 203 (1980)ADSGoogle Scholar
  62. 62.
    Aidala C.A., Ellinghaus F., Sassot R., Seele J.P., Stratmann M.: Global analysis of fragmentation functions for \({\eta}\) mesons. Phys. Rev. D83, 034002 (2011)ADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Jorge Segovia
    • 1
  • David R. Entem
    • 1
  • Francisco Fernández
    • 1
  1. 1.Grupo de Física Nuclear and Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM)Universidad de SalamancaSalamancaSpain

Personalised recommendations