Few-Body Systems

, Volume 57, Issue 7, pp 541–547 | Cite as

Towards a Microscopic Understanding of Nucleon Polarizabilities

  • Gernot EichmannEmail author
Part of the following topical collections:
  1. Light Cone 2015


We outline a microscopic framework to calculate nucleon Compton scattering from the level of quarks and gluons within the covariant Faddeev approach. We explain the connection with hadronic expansions of the Compton scattering amplitude and discuss the obstacles in maintaining electromagnetic gauge invariance. Finally we give preliminary results for the nucleon polarizabilities.


Transition Form Factor Faddeev Equation Born Term Virtual Compton Scattering Gauge Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hagelstein, F., Miskimen, R., Pascalutsa, V.: Nucleon Polarizabilities: from Compton scattering to hydrogen atom. arXiv:1512.03765 [nucl-th]
  2. 2.
    Olive K.A. et al.: Review of particle physics. Chin. Phys. C38, 090001 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Arrington J., Blunden P., Melnitchouk W.: Review of two-photon exchange in electron scattering. Prog. Part. Nucl. Phys. 66, 782–833 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Downie E.J., Fonvieille H.: Real and virtual Compton scattering: the nucleon polarisabilities. Eur. Phys. J. Special Topics 198, 287–306 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Guidal M., Moutarde H., Vanderhaeghen M.: Generalized parton distributions in the valence region from deeply virtual Compton scattering. Rep. Prog. Phys. 76, 066202 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Griesshammer H.W. et al.: Using effective field theory to analyse low-energy Compton scattering data from protons and light nuclei. Prog. Part. Nucl. Phys. 67, 841–897 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Drechsel D., Pasquini B., Vanderhaeghen M.: Dispersion relations in real and virtual Compton scattering. Phys. Rep. 378, 99–205 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Schumacher M., Scadron M.D.: Dispersion theory of nucleon Compton scattering and polarizabilities. Fortschr. Phys. 61, 703–741 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Eichmann G. et al.: Nucleon mass from a covariant three-quark Faddeev equation. Phys. Rev. Lett. 104, 201601 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Sanchis-Alepuz H. et al.: Delta and Omega masses in a three-quark covariant Faddeev approach. Phys. Rev. D84, 096003 (2011)ADSGoogle Scholar
  11. 11.
    Eichmann G.: Nucleon electromagnetic form factors from the covariant Faddeev equation. Phys. Rev. D84, 014014 (2011)ADSGoogle Scholar
  12. 12.
    Williams, R., Fischer, C.S., Heupel, W.: Light mesons in QCD and unquenching effects from the 3PI effective action. arXiv:1512.00455 [hep-ph]
  13. 13.
    Maris P., Tandy P.C.: Bethe–Salpeter study of vector meson masses and decay constants. Phys. Rev. C60, 055214 (1999)ADSGoogle Scholar
  14. 14.
    Sanchis-Alepuz H., Fischer C.S.: Octet and decuplet masses: a covariant three-body Faddeev calculation. Phys. Rev. D90(9), 096001 (2014)ADSGoogle Scholar
  15. 15.
    Alkofer R. et al.: Electromagnetic baryon form factors in the Poincaré-covariant Faddeev approach. Hyperfine Interact. 234(1–3), 149–154 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Sanchis-Alepuz, H., Fischer, C.S.: Hyperon elastic electromagnetic form factors in the space-like momentum region. arXiv:1512.00833 [hep-ph]
  17. 17.
    Eichmann G. et al.: Toward unifying the description of meson and baryon properties. Phys. Rev. C79, 012202 (2009)ADSGoogle Scholar
  18. 18.
    Cloet I.C. et al.: Survey of nucleon electromagnetic form factors. Few Body Syst. 46, 1–36 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Segovia, J.: Elastic and transition form factors in DSEs. arXiv:1601.00973 [nucl-th]
  20. 20.
    Eichmann G., Fischer C.S., Heupel W.: The light scalar mesons as tetraquarks. Phys. Lett. B753, 282–287 (2016)CrossRefGoogle Scholar
  21. 21.
    Eichmann, G., Fischer, C.S., Heupel, W., Williams, R.: The muon g-2: Dyson–Schwinger status on hadronic light-by-light scattering. In: Confinement XI, (2014). arXiv:1411.7876 [hep-ph]
  22. 22.
    Eichmann G., Fischer C.S.: Unified description of hadron-photon and hadron-meson scattering in the Dyson–Schwinger approach. Phys. Rev. D85, 034015 (2012)ADSGoogle Scholar
  23. 23.
    Eichmann G., Fischer C.S.: Nucleon Compton scattering in the Dyson–Schwinger approach. Phys.Rev. D87(3), 036006 (2013)ADSGoogle Scholar
  24. 24.
    Eichmann G., Fischer C.S., Heupel W.: Four-point functions and the permutation group S4. Phys. Rev. D92(5), 056006 (2015)ADSGoogle Scholar
  25. 25.
    Tarrach R.: Invariant amplitudes for virtual Compton scattering off polarized nucleons free from kinematical singularities, zeros and constraints. Nuovo Cimento A28, 409 (1975)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikJustus-Liebig-Universität GiessenGiessenGermany

Personalised recommendations