Advertisement

Few-Body Systems

, Volume 56, Issue 10, pp 659–663 | Cite as

Slightly Imbalanced System of a Few Attractive Fermions in a One-Dimensional Harmonic Trap

  • Tomasz Sowiński
Article

Abstract

The ground-state properties of the two-flavored mixture of a few attractive fermions confined in a one-dimensional harmonic trap is studied. It is shown that for slightly imbalanced system the pairing between fermions of opposite spins has completely different features that in the balanced case. The fraction of correlated pairs is suppressed by the presence of additional particle and another uncorrelated two-body orbital dominates in the ground-state of the system.

Keywords

Balance System Imbalanced System High Angular Momentum State Attractive Fermion Harmonic Oscillator Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blume D.: Few-body physics with ultracold atomic and molecular systems in traps. Rep. Prog. Phys. 75, 046401 (2012)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Zinner N.T.: Few-body physics in a many-body world. Few-Body Syst. 55, 599 (2014)CrossRefADSGoogle Scholar
  3. 3.
    Serwane F. et al.: Deterministic preparation of a tunable few-fermion system. Science 332, 6027 (2011)CrossRefGoogle Scholar
  4. 4.
    Wenz A. et al.: From few to many: observing the formation of a fermi sea one atom at a time. Science 342, 457 (2013)CrossRefADSGoogle Scholar
  5. 5.
    Haller E. et al.: Realization of an excited, strongly correlated quantum gas phase. Science 325, 1224 (2009)CrossRefADSGoogle Scholar
  6. 6.
    Zürn G. et al.: Pairing in few-fermion systems with attractive interactions. Phys. Rev. Lett. 111, 175302 (2013)CrossRefADSGoogle Scholar
  7. 7.
    Sowiński T., Grass T., Dutta O., Lewenstein M.: Few interacting fermions in a one-dimensional harmonic trap. Phys. Rev. A. 88, 033607 (2013)CrossRefADSGoogle Scholar
  8. 8.
    Gharashi S.E., Blume D.: Correlations of the upper branch of 1D harmonically trapped two-component fermi gases. Phys. Rev. Lett. 111, 045302 (2013)CrossRefADSGoogle Scholar
  9. 9.
    Lindgren E. et al.: Fermionization of two-component few-fermion systems in a one-dimensional harmonic trap. New J. Phys. 16, 063003 (2014)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Artem G. et al.: Multicomponent strongly interacting few-fermion systems in one dimension. Few-Body Syst. 55, 839 (2014)CrossRefGoogle Scholar
  11. 11.
    Cui X., Ho T.-L.: Ground-state ferromagnetic transition in strongly repulsive one-dimensional Fermi gases. Phys. Rev. A. 89, 023611 (2014)CrossRefADSGoogle Scholar
  12. 12.
    Blume D., Yan Y.: Temperature dependence of small harmonically trapped atom systems with Bose, Fermi, and Boltzmann statistics. Phys. Rev. A. 90, 013620 (2014)CrossRefADSGoogle Scholar
  13. 13.
    Loft N. et al.: A variational approach to repulsively interacting three-fermion systems in a one-dimensional harmonic trap. EPJ D. 69, 65 (2015)CrossRefADSGoogle Scholar
  14. 14.
    Sowiński T., Gajda M., Rza̧żewski K.: Pairing in a system of a few attractive fermions in a harmonic trap. EPL. 109, 26005 (2015)CrossRefADSGoogle Scholar
  15. 15.
    D’Amico P., Rontani M.: Pairing of a few Fermi atoms in one dimension. Phys. Rev. A. 91, 043610 (2015)CrossRefADSGoogle Scholar
  16. 16.
    Pȩcak, D., Gajda, M., Sowiński, T.: Two-flavor mixture of a few fermions of different mass in a one-dimensional harmonic trap. arXiv:1506.03592
  17. 17.
    Cooper L.N.: Bound electron pairs in a degenerate fermi gas. Phys. Rev. 104, 1189 (1956)zbMATHCrossRefADSGoogle Scholar
  18. 18.
    Bardeen J., Cooper L.N., Schrieffer J.R.: Theory of superconductivity. Phys. Rev. 108, 1175 (1957)zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Harshman N.L.: Spectroscopy for a few atoms harmonically trapped in one dimension. Phys. Rev. A. 89, 033633 (2014)CrossRefADSGoogle Scholar
  20. 20.
    Lehoucq R.B., Sorensen D.C., Yang C.: Arpack Users Guide: Solution of Large-Scale Eigenvalue Problems with Implicityly Restorted Arnoldi Methods. Society for Industrial & Applied Mathematics, Philadelphia (1998)CrossRefGoogle Scholar
  21. 21.
    Pietraszewicz J. et al.: Two component Bose–Hubbard model with higher angular momentum states. Phys. Rev. A 85, 053638 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Institute of Physics of the Polish Academy of SciencesWarsawPoland

Personalised recommendations