Few-Body Systems

, Volume 56, Issue 11–12, pp 859–867 | Cite as

Efimov Physics and the Three-Body Parameter for Shallow van der Waals Potentials

  • D. BlumeEmail author


Extremely weakly-bound three-boson systems are predicted to exhibit intriguing universal properties such as discrete scale invariance. Motivated by recent experimental studies of the ground and excited helium trimers, this work analyzes the three-body parameter and the structural properties of three helium atoms as the s-wave scattering length is tuned artificially. Connections with theoretical and experimental studies of the Efimov scenario as it pertains to cold atom systems are made.


Feshbach Resonance Ultracold Atom Discrete Scale Invariance Cold Atom System Helium Trimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Efimov V.: Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 33, 563–564 (1970)CrossRefADSGoogle Scholar
  2. 2.
    Lim T.K., Duffy S.K., Damer W.C.: Efimov state in the 4He trimer. Phys. Rev. Lett. 38, 341–343 (1977)CrossRefADSGoogle Scholar
  3. 3.
    Cornelius T., Glöckle W.: Efimov states for three 4He atoms?. J. Chem. Phys. 85, 3906–3912 (1986)CrossRefADSGoogle Scholar
  4. 4.
    Bedaque P.F., Hammer H.-W., van Kolck U.: Renormalization of the three-body system with short-range interactions. Phys. Rev. Lett. 82, 463–467 (1999)CrossRefADSGoogle Scholar
  5. 5.
    Nielsen E., Macek J.H.: Low-energy recombination of identical Bosons by three-body collisions. Phys. Rev. Lett. 83, 1566–1569 (1999)CrossRefADSGoogle Scholar
  6. 6.
    Esry B.D., Greene C.H., Burke J.P.: Recombination of three atoms in the ultracold limit. Phys. Rev. Lett. 83, 1751–1754 (1999)CrossRefADSGoogle Scholar
  7. 7.
    Bedaque P.F., Braaten E., Hammer H.-W.: Three-body recombination in Bose gases with large scattering length. Phys. Rev. Lett. 85, 908–911 (2000)CrossRefADSGoogle Scholar
  8. 8.
    Braaten E., Hammer H.-W.: Universality in few-body systems with large scattering length. Phys. Rep. 428, 259–390 (2006)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Ferlaino F., Grimm R.: Trend: forty years of efimov physics: how a bizarre prediction turned into a hot topic. Physics 3, 9 (2010)CrossRefGoogle Scholar
  10. 10.
    Kraemer T., Mark M., Waldburger P., Danzl J.G., Chin C., Engeser B., Lange A.D., Pilch K., Jaakkola A., Nägerl H.-C., Grimm R.: Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature 440, 315–318 (2006)CrossRefADSGoogle Scholar
  11. 11.
    Knoop S., Ferlaino F., Mark M., Berninger M., Schöbel H., Nägerl H.-C., Grimm R.: Observation of an Efimov-like trimer resonance in ultracold atomdimer scattering. Nat. Phys. 5, 227–230 (2009)CrossRefGoogle Scholar
  12. 12.
    Zaccanti M., Deissler B., D’Errico C., Fattori M., Jona-Lasinio M., Müller S., Roati G., Inguscio M., Modugno G.: Observation of an Efimov spectrum in an atomic system. Nat. Phys. 5, 586–591 (2009)CrossRefGoogle Scholar
  13. 13.
    Gross N., Shotan Z., Kokkelmans S., Khaykovich L.: Observation of universality in ultracold 7Li three-body recombination. Phys. Rev. Lett. 103, 163202 (2009)CrossRefADSGoogle Scholar
  14. 14.
    Pollack S.E., Dries D., Hulet R.G.: Universality in three- and four-body bound states of ultracold atoms. Science 326, 1683–1685 (2009)CrossRefADSGoogle Scholar
  15. 15.
    Ottenstein T.B., Lompe T., Kohnen M., Wenz A.N., Jochim S.: Collisional stability of a three-component degenerate fermi gas. Phys. Rev. Lett. 101, 203202 (2008)CrossRefADSGoogle Scholar
  16. 16.
    Huckans J.H., Williams J.R., Hazlett E.L., Stites R.W., O’Hara K.M.: Three-body recombination in a three-state fermi gas with widely tunable interactions. Phys. Rev. Lett. 102, 165302 (2009)CrossRefADSGoogle Scholar
  17. 17.
    Williams J.R., Hazlett E.L., Huckans J.H., Stites R.W., Zhang Y., O’Hara K.M.: Evidence for an excited-state Efimov trimer in a three-component fermi gas. Phys. Rev. Lett. 103, 130404 (2009)CrossRefADSGoogle Scholar
  18. 18.
    Wenz A.N., Lompe T., Ottenstein T.B., Serwane F., Zürn G., Jochim S.: Universal trimer in a three-component Fermi gas. Phys. Rev. A 80, 040702(R) (2009)CrossRefADSGoogle Scholar
  19. 19.
    Lompe T., Ottenstein T.B., Serwane F., Wenz A.N., Zürn G., Jochim S.: Radio-frequency association of Efimov trimers. Science 330, 940–944 (2010)CrossRefADSGoogle Scholar
  20. 20.
    Nakajima S., Horikoshi M., Mukaiyama T., Naidon P., Ueda M.: Measurement of an Efimov Trimer binding energy in a three-component mixture of 6Li. Phys. Rev. Lett. 106, 143201 (2011)CrossRefADSGoogle Scholar
  21. 21.
    Chin C., Grimm R., Julienne P., Tiesinga E.: Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010)CrossRefADSGoogle Scholar
  22. 22.
    Berninger M., Zenesini A., Huang B., Harm W., Nägerl H.-C., Ferlaino F., Grimm R., Julienne P.S., Hutson J.M.: Universality of the three-body parameter for Efimov states in ultracold cesium. Phys. Rev. Lett. 107, 120401 (2011)CrossRefADSGoogle Scholar
  23. 23.
    Roy S., Landini M., Trenkwalder A., Semeghini G., Spagnolli G., Simoni A., Fattori M., Inguscio M., Modugno G.: Test of the universality of the three-body Efimov parameter at narrow feshbach resonances. Phys. Rev. Lett. 111, 053202 (2013)CrossRefADSGoogle Scholar
  24. 24.
    Wang J., D’Incao J.P., Esry B.D., Greene C.H.: Origin of the three-body parameter universality in Efimov physics. Phys. Rev. Lett. 108, 263001 (2012)CrossRefADSGoogle Scholar
  25. 25.
    Naidon P., Endo S., Ueda M.: Physical origin of the universal three-body parameter in atomic Efimov physics. Phys. Rev. A 90, 022106 (2014)CrossRefADSGoogle Scholar
  26. 26.
    Naidon P., Endo S., Ueda M.: Microscopic origin and universality classes of the Efimov three-body parameter. Phys. Rev. Lett. 112, 105301 (2014)CrossRefADSGoogle Scholar
  27. 27.
    Wang Y., Julienne P.S.: Universal van der Waals physics for three ultracold atoms. Nat. Phys. 10, 768–773 (2014)CrossRefGoogle Scholar
  28. 28.
    Gogolin A.O., Mora C., Egger R.: Analytical solution of the Bosonic three-body problem. Phys. Rev. Lett. 100, 140404 (2008)MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    Thøgersen M., Fedorov D.V., Jensen A.S.: N-body Efimov states of trapped bosons. Europhys. Lett. 83, 30012 (2008)CrossRefADSGoogle Scholar
  30. 30.
    Platter L., Ji C., Phillips D.R.: Range corrections to three-body observables near a Feshbach resonance. Phys. Rev. A 79, 022702 (2009)CrossRefADSGoogle Scholar
  31. 31.
    D’Incao J.P., Greene C.H., Esry B.D.: The short-range three-body phase and other issues impacting the observation of Efimov physics in ultracold quantum gases. J. Phys. B 42, 044016 (2009)CrossRefADSGoogle Scholar
  32. 32.
    Naidon P., Ueda M.: The Efimov effect in lithium 6. C. R. Phys. 12, 13–26 (2011)CrossRefADSGoogle Scholar
  33. 33.
    Schmidt R., Rath S., Zwerger W.: Efimov physics beyond universality. Eur. Phys. J. B 85, 386 (2012)CrossRefADSGoogle Scholar
  34. 34.
    Horinouchi Y., Ueda M.: Onset of a limit cycle and universal three-body parameter in Efimov physics. Phys. Rev. Lett. 114, 025301 (2015)CrossRefADSGoogle Scholar
  35. 35.
    Huang B., O’Hara K.M., Grimm R., Hutson J.M., Petrov D.S.: Three-body parameter for Efimov states in 6Li. Phys. Rev. A 90, 043636 (2014)CrossRefADSGoogle Scholar
  36. 36.
    Voigtsberger J., Zeller S., Becht J., Neumann N., Sturm F., Kim H.-K., Waitz M., Trinter F., Kunitski M., Kalinin A., Wu J., Schöllkopf W., Bressanini D., Czasch A., Williams J.B., Ullmann-Pfleger K., Schmidt L.P.H., Schöffler M.S., Grisenti R.E., Jahnke T., Dörner R.: Imaging the structure of the trimer systems 4He3 and 3He4He2. Nat. Commun. 5, 5765 (2014)CrossRefADSGoogle Scholar
  37. 37.
    Kunitski M., Zeller S., Voigtsberger J., Kalinin A., Schmidt L.P., Schöffler M., Czasch A., Schöllkopf W., Grisenti R.E., Jahnke T., Blume D., Dörner R.: Three-body physics. Observation of the Efimov state of the helium trimer. Science 348, 551–555 (2015)CrossRefADSGoogle Scholar
  38. 38.
    Esry B.D., Lin C.D., Greene C.H.: Adiabatic hyperspherical study of the helium trimer. Phys. Rev. A 54, 394–401 (1996)CrossRefADSGoogle Scholar
  39. 39.
    Nielsen E., Fedorov D.V., Jensen A.S.: The structure of the atomic helium trimers: halos and Efimov states. J. Phys. B 31, 4085–4105 (1998)CrossRefADSGoogle Scholar
  40. 40.
    Naidon P., Hiyama E., Ueda M.: Universality and the three-body parameter of 4He trimers. Phys. Rev. A 86, 012502 (2012)CrossRefADSGoogle Scholar
  41. 41.
    Braaten E., Hammer H.-W.: Universality in the three-body problem for 4He atoms. Phys. Rev. A 67, 042706 (2003)CrossRefADSGoogle Scholar
  42. 42.
    Delfino A., Frederico A., Tomio L.: Low-energy universality in three-body models. Few-Body Syst. 28, 259–271 (2000)CrossRefADSGoogle Scholar
  43. 43.
    Yamashita M.T., de Carvalho R.S.M., Tomio L., Frederico T.: Scaling predictions for radii of weakly bound triatomic molecules. Phys. Rev. A 68, 012506 (2003)CrossRefADSGoogle Scholar
  44. 44.
    Cencek W., Przybytek M., Komasa J., Mehl J.B., Jeziorski B., Szalewicz K.: Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium. J. Chem. Phys. 136, 224303 (2012)CrossRefADSGoogle Scholar
  45. 45.
    Przybytek M., Cencek W., Komasa J., Lach G., Jeziorski B., Szalewicz K.: Relativistic and quantum electrodynamics effects in the Helium pair potential. Phys. Rev. Lett. 104, 183003 (2012)CrossRefADSGoogle Scholar
  46. 46.
    Gonzáles-Lezana T., Rubayo-Soneira J., Miret-Artés S., Gianturco F.A., Delgado-Barrio G., Villarreal P.: Efimov states for 4He trimers?. Phys. Rev. Lett. 82, 1648 (1999)CrossRefADSGoogle Scholar
  47. 47.
    Hiyama E., Kamimura M.: Universality in Efimov-associated tetramers in 4He. Phys. Rev. A 90, 052514 (2014)CrossRefADSGoogle Scholar
  48. 48.
    Kievsky A., Gattobigio M.: Universal nature and finite-range corrections in elastic atom-dimer scattering below the dimer breakup threshold. Phys. Rev. A 87, 052719 (2013)CrossRefADSGoogle Scholar
  49. 49.
    Blume, D., Greene, C.H., Esry, B.D.: Comparative study of He3, Ne3, and Ar3 using hyperspherical coordinates. J. Chem. Phys. 113, 2145–2158 (2000); see also Blume, D., Greene, C.H., Esry, B.D.: Erratum. J. Chem. Phys. 141, 069901 (2014)Google Scholar
  50. 50.
    Lin C.D.: Hyperspherical coordinate approach to atomic and other Coulombic three-body systems. Phys. Rep. 257, 1–83 (1995)CrossRefADSGoogle Scholar
  51. 51.
    Fedorov D.V., Jensen A.S.: Efimov effect in coordinate space Faddeev equations. Phys. Rev. Lett. 71, 4103–4106 (1993)CrossRefADSGoogle Scholar
  52. 52.
    Jonsell S., Heiselberg H., Pethick C.J.: Universal behavior of the energy of trapped few-Boson systems with large scattering length. Phys. Rev. Lett. 89, 250401 (2002)CrossRefADSGoogle Scholar
  53. 53.
    Huang B., Sidorenkov L.A., Grimm R., Hutson J.M.: Observation of the second triatomic resonance in Efimov’s scenario. Phys. Rev. Lett. 112, 190401 (2014)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of Physics and AstronomyWashington State UniversityPullmanUSA

Personalised recommendations