Advertisement

Few-Body Systems

, Volume 56, Issue 11–12, pp 727–736 | Cite as

Tunneling of Atoms, Nuclei and Molecules

  • C. A. BertulaniEmail author
Article

Abstract

This is a brief review of few relevant topics on tunneling of composite particles and how the coupling to intrinsic and external degrees of freedom affects tunneling probabilities. I discuss the phenomena of resonant tunneling, different barriers seen by subsystems, damping of resonant tunneling by level bunching and continuum effects due to particle dissociation.

Keywords

Composite Particle Transmission Probability Resonant Tunneling Halo Nucleus Feshbach Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoyle F.: On nuclear reactions occurring in very hot stars. I. The synthesis of elements from carbon to nickel. Astrophys. J. Suppl. 1, 121 (1954)CrossRefADSGoogle Scholar
  2. 2.
    Gamow G.: Zur Quantentheorie des Atomkernes. Z. Physik 51, 204 (1928)CrossRefADSzbMATHGoogle Scholar
  3. 3.
    Gurney R.W., Condon E.U.: Quantum mechanics and radioactive disintegration. Nature 122, 439 (1928)CrossRefADSzbMATHGoogle Scholar
  4. 4.
    Esaki, L.: Long journey into tunneling. Nobel Lecture (1973)Google Scholar
  5. 5.
    Binnig, G., Rohrer, H.:Scanning tunneling microscopy. IBM J. Res. Dev. 30, 4 (1986)Google Scholar
  6. 6.
    Bertulani, C.A.: International Conference Fusion11—Summary Talk. Saint Malo, France, May 2–6, 2011, Eur. Phys. J. Conf. Ser. 17, 15001 (2011)Google Scholar
  7. 7.
    Varga R.S.: Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs (1962)Google Scholar
  8. 8.
    Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)Google Scholar
  9. 9.
    Stetcu I., Bertulani C., Bulgac A., Magierski P., Roche K.J.: Relativistic Coulomb excitation within time dependent superfluid local density approximation. Phys. Rev. Lett. 114, 012701 (2015)CrossRefADSGoogle Scholar
  10. 10.
    Tuckerman M.E., Berne B.J., Rossi A.: Molecullar dynamics algorithm for multiple time scales: systems with disparate masses. J. Chem. Phys. 94, 1465 (1991)CrossRefADSGoogle Scholar
  11. 11.
    Park H.S., Liu W.K.: An introduction and tutorial on multiple-scale analysis in solids. Comput. Methods Appl. Mech. Eng. 193, 1733 (2004)MathSciNetCrossRefADSzbMATHGoogle Scholar
  12. 12.
    Saito N., Kayanuma Y.: Resonant tunnelling of a composite particle through a single potential barrier. J. Phys. Condens. Matter 6, 3759 (1994)CrossRefADSGoogle Scholar
  13. 13.
    Saito N., Kayanuma Y.: Resonant tunnelling of a composite particle through a single potential barrier. Phys. Rev. B 51, 5453 (1995)CrossRefADSGoogle Scholar
  14. 14.
    Saito N., Kayanuma Y.: Resonant tunnelling of a composite particle through a single potential barrier. Europhys. Lett. 60, 331 (2002)CrossRefADSGoogle Scholar
  15. 15.
    Bacca S., Feldmeier H.: Resonant tunneling in a schematic model. Phys. Rev. C 73, 054608 (2006)CrossRefADSGoogle Scholar
  16. 16.
    Bertulani C.A., Flambaum V.V., Zelevinsky V.G.: Tunneling of a composite particle: effects of intrinsic structure. J. Phys. G 34, 2289 (2007)CrossRefADSGoogle Scholar
  17. 17.
    Goodvin G.L., Shegelski M.R.: Tunneling of a diatomic molecule incident upon a potential barrier. Phys. Rev. A 71, 032719 (2005)CrossRefADSGoogle Scholar
  18. 18.
    Goodvin G.L., Shegelski M.R.: Tunneling of a diatomic molecule incident upon a potential barrier. Phys. Rev. A 72, 042713 (2005)CrossRefADSGoogle Scholar
  19. 19.
    Canto L.F., Donangelo R., Lotti P., Hussein M.S.: Effect of Coulomb dipole polarizability of halo nuclei on their near-barrier fusion with heavy targets. Phys. Rev. C 52, R2848 (1995)CrossRefADSGoogle Scholar
  20. 20.
    Takigawa N., Kuratani M., Sagawa H.: Effect of breakup reactions on the fusion of a halo nucleus. Phys. Rev. C 47, R2470 (1993)CrossRefADSGoogle Scholar
  21. 21.
    Hussein M.S., Pato M.P., Canto L.F., Donangelo R.: Near-barrier fusion of Li11 with heavy spherical and deformed targets. Phys. Rev. C 46, 377 (1992)CrossRefADSGoogle Scholar
  22. 22.
    Hussein M.S., Pato M.P., Canto L.F., Donangelo R.: Real part of the polarization potential for induced11 fusion reactions. Phys. Rev. C 47, 2398 (1993)CrossRefADSGoogle Scholar
  23. 23.
    Dasso C., Vitturi A.: Does the presence of Li11 breakup channels reduce the cross section for fusion processes?. Phys. Rev. C 50, R12 (1995)CrossRefADSGoogle Scholar
  24. 24.
    Lemasson A. et al.: Modern Rutherford experiment: tunneling of the most neutron-rich nucleus. Phys. Rev. Lett. 103, 232701 (2009)CrossRefADSGoogle Scholar
  25. 25.
    Ahsan N., Volya A.: Quantum tunneling and scattering of a composite object reexamined. Phys. Rev. C 82, 064607 (2010)CrossRefADSGoogle Scholar
  26. 26.
    Shotter A.C., Shotter M.D.: Quantum mechanical tunneling of composite particle systems: linkage to sub-barrier nuclear reactions. Phys. Rev. C 83, 054621 (2011)CrossRefADSGoogle Scholar
  27. 27.
    Canto L.F., Gomes P.R.S., Donangelo R., Hussein M.S.: Fusion and breakup of weakly bound nuclei. Phys. Rep. 424, 1 (2006)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    Landauer R., Martin T.: Barrier interaction time in tunneling. Rev. Mod. Phys. 66, 217 (1994)CrossRefADSGoogle Scholar
  29. 29.
    Kasagi J. et al.: Barrier interaction time in tunneling. Phys. Rev. Lett. 79, 371 (1997)CrossRefADSGoogle Scholar
  30. 30.
    Bertulani C.A., de Paula D.T., Zelevinsky V.G.: Bremsstrahlung radiation by a tunneling particle: a time-dependent description. Phys. Rev. C 60, 031602 (1999)CrossRefADSGoogle Scholar
  31. 31.
    Papenbrock T., Bertsch G.F.: Bremsstrahlung in alpha decay. Phys. Rev. Lett. 80, 4141 (1998)CrossRefADSGoogle Scholar
  32. 32.
    Boie H., Scheit H., Jentschura U.D., Koeck F., Lauer M., Milstein A.I., Terekhov I.S., Schwalm D.: Bremsstrahlung in? Decay Reexamined. Phys. Rev. Lett. 99, 022505 (2007)CrossRefADSGoogle Scholar
  33. 33.
    Jentschura U.D., Milstein A.I., Terekhov I.S., Boie H., Scheit H., Schwalm D.: Quasiclassical description of bremsstrahlung accompanying? Decay including quadrupole radiation. Phys. Rev. C 77, 014611 (2008)CrossRefADSGoogle Scholar
  34. 34.
    Hawking, S.W.: Chronology protection conjecture. Phys. Rev. D 46, 603 (1992). http://www.hawking.org.uk/space-and-time-warps.html
  35. 35.
    Flambaum V.V., Zelevinsky V.G.: Radiation corrections increase tunneling probability. Phys. Rev. Lett. 83, 3108 (1999)CrossRefADSGoogle Scholar
  36. 36.
    Raspe, R.E.: The Surprising Adventures of Baron Münchhausen (1770). Available online through the Project Gutenberg: http://onlinebooks.library.upenn.edu/webbin/gutbook/lookup?num=3154
  37. 37.
    Hagino K., Balantekin A.B.: Radiation correction to astrophysical fusion reactions and the electron screening problem. Phys. Rev. C 66, 055801 (2002)CrossRefADSGoogle Scholar
  38. 38.
    Bertulani C.A., de Paula D.T.: Stopping of swift protons in matter and its implication for astrophysical fusion reactions. Phys. Rev. C 62, 045802 (2000)CrossRefADSGoogle Scholar
  39. 39.
    Bertulani C.A.: Electronic stopping in astrophysical fusion reactions. Phys. Lett. B 585, 35 (2004)CrossRefADSGoogle Scholar
  40. 40.
    Lewenstein M., Liu W.V.: Optical lattices: orbital dance. Nat. Phys. 7, 101 (2011)CrossRefGoogle Scholar
  41. 41.
    Bloch I., Dalibard J., Zwerger W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)CrossRefADSGoogle Scholar
  42. 42.
    Greiner M., Fölling S.: Condensed-matter physics: optical lattices. Nature 453, 736 (2008)CrossRefADSGoogle Scholar
  43. 43.
    Sachdev S.: Quantum magnetism and criticality. Nat. Phys. 4, 173 (2008)CrossRefGoogle Scholar
  44. 44.
    Bailey T., Bertulani C.A., Timmermans E.: Tunneling, diffusion, and dissociation of Feshbach molecules in optical lattices. Phys. Rev. A 85, 033627 (2012)CrossRefADSGoogle Scholar
  45. 45.
    Zelevinsky V.G., Flambaum V.V.: Quantum tunnelling of a complex system: effects of a finite size and intrinsic structure. J. Phys. G 31, 355 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of Physics and AstronomyTexas A&M University-CommerceCommerceUSA

Personalised recommendations