Advertisement

Few-Body Systems

, Volume 56, Issue 1, pp 41–51 | Cite as

Dirac–Hulthén Problem Within Coulomb–Hulthén Tensor Interaction Via SUSYQM

  • A. N. IkotEmail author
  • Sunday E. Etuk
  • B. H. Yazarloo
  • S. Zarrinkamar
  • H. Hassanabadi
Article
  • 83 Downloads

Abstract

We solve the Dirac equation for the Hulthén potential with Coulomb–Hulthén tensor interaction for arbitrary spin–orbit coupling quantum number κ by using the supersymmetric quantum mechanics and a proper approximation to the centrifugal term. The effect of tensor interaction and parameters of potential on the energy of the system are also discussed.

Keywords

Dirac Equation Tensor Interaction Pseudospin Symmetry Supersymmetric Quantum Mechanic Dirac Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ginocchio J.N.: Relativistic harmonic oscillator with spin symmetry. Phys. Rev. C 69, 034318 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Ginocchio J.N.: Pseudospin as a relativistic symmetry. Phys. Rev. Lett. 78, 436 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Page P.R., Goldman T., Ginocchio J.N.: Relativistic symmetry suppresses Quark spin-orbit splitting. Phys. Rev. Lett. 86, 204 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Ginocchio J.N.: Relativistic symmetries in nuclei and hadrons. Phys. Rep. 414, 165 (2005)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Nikiforov A.F., Uvarov V.B.: Special Functions of mathematical physics. Birkhauser, Basel (1988)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cifti H., Hall R.L., Saad N.: Asymptotic iteration method for eigenvalue problems. J. Phys. A 36, 11807 (2003)ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    Wei G.F., Dong S.H.: Algebraic approach to pseudospin symmetry for Dirac equation with scalar and vector modified Pöl-Teller potential. Euro. Phys. Lett. 87, 4004 (2009)Google Scholar
  8. 8.
    Cooper F., Khare A., Sukhatme U.: Supersymmetry and quantum mechanics. Phys. Rep. 251, 267 (1995)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dong S.H.: Factorization Method in Quantum Mechanics. Springer, Dordrecht (2007)zbMATHGoogle Scholar
  10. 10.
    Hassanabadi, H., Yazarloo, B.H., Zarrinkamar, S.: Exact solution of Klein–Gordon equation for Hua plus modified Eckart potentials. Few-Body Syst. (2013) doi: 10.1007/s00601-013-0704-3
  11. 11.
    Witten E.: Dynamical breaking of supersymmetry . Nucl. Phys. B 188, 513 (1981)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Hassanabadi, H., Yazarloo, B.H.: Exact solutions of the Spinless-Salpeter equation under Kink-Like potential. Chin. Phys. C 37(12), 123101 (2013)Google Scholar
  13. 13.
    Hassanabadi H., Yazarloo B.H., Zarrinkamar S., Rajabi A.A.: DKP equation under scalar and vector cornell interactions. Phys. Part. Nucl. Lett. 10, 132 (2013)CrossRefGoogle Scholar
  14. 14.
    Zarrinkamar, S., Rajabi, A.A., Yazarloo, B.H., Hassanabadi, H.: The soft-core coulomb potential in the semi-relativistic two-body basis. Few-Body Syst. (2013) doi: 10.1007/s00601-012-0527-7
  15. 15.
    Hassanabadi H., Yazarloo B.H., Zarrinkamar S., Rajabi A.A.: Duffin-Kemmer-Petiau equation under a scalar Coulomb interaction. Phys. Rev. C 84, 064003 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Lisboa R., Malheiro M., Alberto P., Fiolhais M., de Castro A.S.: Spin and pseudospin symmetries in the antinucleon spectrum of nuclei. Phys. Rev. C 81, 064324 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Alberto P., de Castro A.S., Malheiro M.: Spin and pseudospin symmetries of the Dirac equation with confining central potentials. Phys. Rev. C 87, 031301(R) (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Troltenier D., Bahri C., Draayer J.P.: Generalized pseudo-SU(3) model and pairing. Nucl. Phys. A 586, 53 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    de Castro A.S., Alberto P.: Spin and pseudospin symmetries in the Dirac equation with central Coulomb potentials. Phys. Rev. A 86, 032122 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Aydogdu O., Maghsoodi E., Hassanabadi H.: Dirac equation for the Hulthen potential within the Yukawa-type tensor interaction. Chin. Phys. B 22, 010302 (2013)CrossRefGoogle Scholar
  21. 21.
    Ikot, A.N., Hassanabadi, H., Yazarloo, B.H., Zarrinkamar, S.: Approximate relativistic κ-state solutions to the dirac-hyperbolic problem with generalized tensor interactions. Int. J. Mod. Phys. E. (2013) doi: 10.1142/S0218301313500481
  22. 22.
    Hassanabadi H., Forouhandeh S.F., Rahimov H., Zarrinkamar S., Yazarloo B.H.: Duffin–Kemmer–Petiau equation under a scalar and vector Hulthen potential; an ansatz solution to the corresponding Heun equation. Can. J. Phys. 90, 299–304 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Lahiri A., Roy P.K., Bagchi B.: Supersymmetry and the three-dimensional isotropic oscillator problem. J. Phys. A: Math. Gen. 20, 5403 (1987)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    Kostelecky V.A., Nieto M.M.: Evidence for a phenomenological supersymmetry in atomic physics. Phys. Rev. Lett. 53, 2285 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    Kostelecky V.A., Nieto M.M.: Analytical wave functions for atomic quantum-defect theory. Phys. Rev. A 32, 3243–3248 (1985)ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    Ikot A.N., Hassanabadi H., Yazarloo B.H., Zarrinkamar S.: Dirac equation for the generalized Deng-Fan potential with Coulomb and Yukawa tensor interactions. J. Korean Phys. Soc. 63, 1503–1514 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Zarrinkamar S., Rajabi A.A., Yazarloo B.H., Hassanabadi H.: An approximate solution of the DKP equation under the Hulthén vector potential. Chin. Phys. C 37, 023101 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • A. N. Ikot
    • 1
    Email author
  • Sunday E. Etuk
    • 2
  • B. H. Yazarloo
    • 3
  • S. Zarrinkamar
    • 4
  • H. Hassanabadi
    • 3
  1. 1.Department of PhysicsUniversity of Port HarcourtPort HarcourtNigeria
  2. 2.Theoretical Physics Group, Department of PhysicsUniversity of UyoUyoNigeria
  3. 3.Department of Basic Sciences, Shahrood BranchIslamic Azad UniversityShahroodIran
  4. 4.Young Researchers and Elite Club, Garmsar BranchIslamic Azad UniversityGarmsarIran

Personalised recommendations