Few-Body Systems

, Volume 55, Issue 12, pp 1185–1222 | Cite as

Nucleon and \({\Delta}\) Elastic and Transition Form Factors

  • Jorge Segovia
  • Ian C. Cloët
  • Craig D. Roberts
  • Sebastian M. Schmidt


We present a unified study of nucleon and \({\Delta}\) elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a symmetry-preserving treatment of a vector \({\otimes}\) vector contact-interaction. The comparison emphasises that experiments are sensitive to the momentum dependence of the running couplings and masses in the strong interaction sector of the Standard Model and highlights that the key to describing hadron properties is a veracious expression of dynamical chiral symmetry breaking in the bound-state problem. Amongst the results we describe, the following are of particular interest: \({G_{E}^{p}(Q^{2})/G_{M}^{p}(Q^{2})}\) possesses a zero at Q2 = 9.5 GeV2; any change in the interaction which shifts a zero in the proton ratio to larger Q2 relocates a zero in \({G_{E}^{n}(Q^{2})/G_M^{n}(Q^{2})}\) to smaller Q2; there is likely a value of momentum transfer above which \({G_{E}^{n} > G_{E}^{p}}\); and the presence of strong diquark correlations within the nucleon is sufficient to understand empirical extractions of the flavour-separated form factors. Regarding the \({\Delta(1232)}\)-baryon, we find that, inter alia: the electric monopole form factor exhibits a zero; the electric quadrupole form factor is negative, large in magnitude, and sensitive to the nature and strength of correlations in the \({\Delta(1232)}\) Faddeev amplitude; and the magnetic octupole form factor is negative so long as rest-frame P- and D-wave correlations are included. In connection with the \({N \to \Delta}\) transition, the momentum-dependence of the magnetic transition form factor, \({G_{M}^{*}}\), matches that of \({G_{M}^{n}}\) once the momentum transfer is high enough to pierce the meson-cloud; and the electric quadrupole ratio is a keen measure of diquark and orbital angular momentum correlations, the zero in which is obscured by meson-cloud effects on the domain currently accessible to experiment. Importantly, within each framework, identical propagators and vertices are sufficient to describe all properties discussed herein. Our analysis and predictions should therefore serve as motivation for measurement of elastic and transition form factors involving the nucleon and its resonances at high photon virtualities using modern electron-beam facilities.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aznauryan I. et al.: Studies of nucleon resonance structure in exclusive meson electroproduction. Int. J. Mod. Phys. E 22, 1330015 (2013)ADSGoogle Scholar
  2. 2.
    Suzuki N. et al.: Disentangling the dynamical origin of P-11 nucleon resonances. Phys. Rev. Lett. 104, 042302 (2010)ADSGoogle Scholar
  3. 3.
    Roberts C.D.: Opportunities and challenges for theory in the N* program. AIP Conf. Proc. 1432, 19–25 (2012)ADSGoogle Scholar
  4. 4.
    Kamano H., Nakamura S.X., Lee T.S.H., Sato T.: Nucleon resonances within a dynamical coupled-channels model of \({\pi N}\) and \({\gamma N}\) reactions. Phys. Rev. C 88, 035209 (2013)ADSGoogle Scholar
  5. 5.
    Cloët I.C., Roberts C.D., Thomas A.W.: Revealing dressed-quarks via the proton’s charge distribution. Phys. Rev. Lett. 111, 101803 (2013)ADSGoogle Scholar
  6. 6.
    Chang L., Cloët I.C., Roberts C.D., Schmidt S.M., Tandy P.C.: Pion electromagnetic form factor at spacelike momenta. Phys. Rev. Lett. 111, 141802 (2013)ADSGoogle Scholar
  7. 7.
    Cloët I.C., Eichmann G., El-Bennich B., Klähn T., Roberts C.D.: Survey of nucleon electromagnetic form factors. Few Body Syst. 46, 1–36 (2009)ADSGoogle Scholar
  8. 8.
    Beringer J. et al.: Review of particle physics (RPP). Phys. Rev. D 86, 010001 (2012)ADSGoogle Scholar
  9. 9.
    Mokeev V. et al.: Experimental study of the P 11(1440) and D 13(1520) resonances from CLAS data on \({ep \rightarrow e^{\prime}\pi^{+} \pi^{-} p'}\). Phys. Rev. C 86, 035203 (2012)ADSGoogle Scholar
  10. 10.
    Mokeev V.I., Aznauryan I.G.: Studies of \({N^{*}}\) structure from the CLAS meson electroproduction data. Int. J. Mod. Phys. Conf. Ser. 26, 1460080 (2014)Google Scholar
  11. 11.
    Chang L., Roberts C.D., Tandy P.C.: Selected highlights from the study of mesons. Chin. J. Phys. 49, 955–1004 (2011)Google Scholar
  12. 12.
    Bashir A. et al.: Collective perspective on advances in Dyson–Schwinger equation QCD. Commun. Theor. Phys. 58, 79–134 (2012)MATHGoogle Scholar
  13. 13.
    Cloët I.C., Roberts C.D.: Explanation and prediction of observables using continuum strong QCD. Prog. Part. Nucl. Phys. 77, 1–69 (2014)ADSGoogle Scholar
  14. 14.
    Gutiérrez-Guerrero L.X., Bashir A., Cloët I.C., Roberts C.D.: Pion form factor from a contact interaction. Phys. Rev. C 81, 065202 (2010)ADSGoogle Scholar
  15. 15.
    Roberts H.L.L., Roberts C.D., Bashir A., Gutiérrez-Guerrero L.X., Tandy P.C.: Abelian anomaly and neutral pion production. Phys. Rev. C 82, 065202 (2010)ADSGoogle Scholar
  16. 16.
    Roberts H.L.L., Chang L., Cloët I.C., Roberts C.D.: Masses of ground and excited-state hadrons. Few Body Syst. 51, 1–25 (2011)ADSGoogle Scholar
  17. 17.
    Roberts H.L.L., Bashir A., Gutiérrez-Guerrero L.X., Roberts C.D., Wilson D.J.: \({\pi}\)- and \({\rho}\)-mesons, and their diquark partners, from a contact interaction. Phys. Rev. C 83, 065206 (2011)ADSGoogle Scholar
  18. 18.
    Wilson D.J., Cloët I.C., Chang L., Roberts C.D.: Nucleon and Roper electromagnetic elastic and transition form factors. Phys. Rev. C 85, 025205 (2012)ADSGoogle Scholar
  19. 19.
    Chen C., Chang L., Roberts C.D., Wan S.-L., Wilson D.J.: Spectrum of hadrons with strangeness. Few Body Syst. 53, 293–326 (2012)ADSGoogle Scholar
  20. 20.
    Chen C., Chang L., Roberts C.D., Wan S.-L., Schmidt S.M., Wilson D.J.: Features and flaws of a contact interaction treatment of the kaon. Phys. Rev. C 87, 045207 (2013)ADSGoogle Scholar
  21. 21.
    Segovia J., Chen C., Roberts C.D., Wan S.: Insights into the \({\gamma^{*} N \to \Delta}\) transition. Phys. Rev. C 88, 032201 (R) (2013)ADSGoogle Scholar
  22. 22.
    Segovia J., Chen C., Cloët I.C., Roberts C.D., Schmidt S.M., Wan S.: Elastic and transition form factors of the \({\Delta(1232)}\). Few Body Syst. 55, 1–33 (2014)ADSGoogle Scholar
  23. 23.
    Sato T., Lee T.-S.H.: Dynamical study of the \({\Delta}\) excitation in \({N (e, e^{\prime} \pi)}\) reactions. Phys. Rev. C 63, 055201 (2001)ADSGoogle Scholar
  24. 24.
    Julia-Diaz B., Lee T.-S.H., Sato T., Smith L.C.: Extraction and interpretation of \({\gamma N \to \Delta}\) form factors within a dynamical model. Phys. Rev. C 75, 015205 (2007)ADSGoogle Scholar
  25. 25.
    Alkofer R., Höll A., Kloker M., Krassnigg A., Roberts C.D.: On nucleon electromagnetic form-factors. Few Body Syst. 37, 1–31 (2005)ADSGoogle Scholar
  26. 26.
    Eichmann G., Alkofer R., Cloët I.C., Krassnigg A., Roberts C.D.: Perspective on rainbow-ladder truncation. Phys. Rev. C 77, 042202(R) (2008)ADSGoogle Scholar
  27. 27.
    Eichmann G., Cloët I.C., Alkofer R., Krassnigg A., Roberts C.D.: Toward unifying the description of meson and baryon properties. Phys. Rev. C 79, 012202(R) (2009)ADSGoogle Scholar
  28. 28.
    Cloët I., Eichmann G., Flambaum V., Roberts C., Bhagwat M. et al.: Current quark mass dependence of nucleon magnetic moments and radii. Few Body Syst. 42, 91–113 (2008)ADSGoogle Scholar
  29. 29.
    Scadron M.D.: Covariant propagators and vertex functions for any spin. Phys. Rev. 165, 1640–1647 (1968)ADSGoogle Scholar
  30. 30.
    Beg M., Lee B., Pais A.: SU(6) and electromagnetic interactions. Phys. Rev. Lett. 13, 514–517 (1964)ADSGoogle Scholar
  31. 31.
    Buchmann A.J., Hernández E., Faessler A.: Electromagnetic properties of the \({\Delta (1232)}\). Phys. Rev. C 55, 448–463 (1997)ADSGoogle Scholar
  32. 32.
    Pichowsky M.A., Walawalkar S., Capstick S.: Meson-loop contributions to the \({\rho \omega}\) mass splitting and \({\rho}\) charge radius. Phys. Rev. D 60, 054030 (1999)ADSGoogle Scholar
  33. 33.
    Maris P., Tandy P.C.: Bethe–Salpeter study of vector meson masses and decay constants. Phys. Rev. C 60, 055214 (1999)ADSGoogle Scholar
  34. 34.
    Jarecke D., Maris P., Tandy P.C.: Strong decays of light vector mesons. Phys. Rev. C 67, 035202 (2003)ADSGoogle Scholar
  35. 35.
    Aznauryan I., Burkert V., Lee T.-S., Mokeev V.: Results from the N* program at JLab. J. Phys. Conf. Ser. 299, 012008 (2011)ADSGoogle Scholar
  36. 36.
    Aznauryan I., Burkert V.: Electroexcitation of nucleon resonances. Prog. Part. Nucl. Phys. 67, 1–54 (2012)ADSGoogle Scholar
  37. 37.
    Jones H.F., Scadron M.D.: Multipole \({\gamma N \Delta}\) form-factors and resonant photoproduction and electroproduction. Ann. Phys. 81, 1–14 (1973)ADSGoogle Scholar
  38. 38.
    Cahill R.T., Roberts C.D., Praschifka J.: Baryon structure and QCD. Aust. J. Phys. 42, 129–145 (1989)ADSGoogle Scholar
  39. 39.
    Cahill R.T., Roberts C.D., Praschifka J.: Calculation of diquark masses in QCD. Phys. Rev. D 36, 2804 (1987)ADSGoogle Scholar
  40. 40.
    Burden C.J., Qian L., Roberts C.D., Tandy P.C., Thomson M.J.: Ground-state spectrum of light-quark mesons. Phys. Rev. C 55, 2649–2664 (1997)ADSGoogle Scholar
  41. 41.
    Maris P.: Effective masses of diquarks. Few Body Syst. 32, 41–52 (2002)ADSGoogle Scholar
  42. 42.
    Blaschke D., Kalinovsky Y., Roepke G., Schmidt S., Volkov M.: 1/N(c) expansion of the quark condensate at finite temperature. Phys. Rev. D 53, 2394–2400 (1996)ADSGoogle Scholar
  43. 43.
    Fischer C.S., Nickel D., Wambach J.: Hadronic unquenching effects in the quark propagator. Phys. Rev. D 76, 094009 (2007)ADSGoogle Scholar
  44. 44.
    Cloët I.C., Roberts C.D.: Form factors and Dyson–Schwinger equations. PoS LC 2008, 047 (2008)Google Scholar
  45. 45.
    Chang L., Cloët I.C., El-Bennich B., Klähn T., Roberts C.D.: Exploring the light–quark interaction. Chin. Phys. C 33, 1189–1196 (2009)ADSGoogle Scholar
  46. 46.
    Roberts C.D., Schmidt S.M.: Dyson–Schwinger equations: density, temperature and continuum strong QCD. Prog. Part. Nucl. Phys. 45, S1–S103 (2000)ADSGoogle Scholar
  47. 47.
    Maris P., Roberts C.D.: Dyson–Schwinger equations: a tool for hadron physics. Int. J. Mod. Phys. E 12, 297–365 (2003)ADSGoogle Scholar
  48. 48.
    Roberts C.D., Bhagwat M.S., Höll A., Wright S.V.: Aspects of hadron physics. Eur. Phys. J. Spec. Top. 140, 53–116 (2007)Google Scholar
  49. 49.
    Hecht M.B., Oettel M., Roberts C.D., Schmidt S.M., Tandy P.C. et al.: Nucleon mass and pion loops. Phys. Rev. C 65, 055204 (2002)ADSGoogle Scholar
  50. 50.
    Roberts C.D., Cahill R.T., Praschifka J.: QCD and a calculation of the \({\omega}\)\({\rho}\) mass splitting. Int. J. Mod. Phys. A 4, 719 (1989)ADSGoogle Scholar
  51. 51.
    Hollenberg L.C., Roberts C.D., McKellar B.H.: Two loop calculation of the \({\omega}\)-\({\rho}\) mass splitting. Phys. Rev. C 46, 2057–2065 (1992)ADSGoogle Scholar
  52. 52.
    Alkofer R., Bender A., Roberts C.D.: Pion loop contribution to the electromagnetic pion charge radius. Int. J. Mod. Phys. A 10, 3319–3342 (1995)ADSGoogle Scholar
  53. 53.
    Mitchell K.L., Tandy P.C.: Pion loop contribution to \({\rho}\)-\({\omega}\) mixing and mass splitting. Phys. Rev. C 55, 1477–1491 (1997)ADSGoogle Scholar
  54. 54.
    Ishii N.: Meson exchange contributions to the nucleon mass in the Faddeev approach to the NJL model. Phys. Lett. B 431, 1–7 (1998)ADSGoogle Scholar
  55. 55.
    Sanchis-Alepuz H., Fischer C.S., Kubrak S.: Pion cloud effects on baryon masses. Phys. Lett. B 733, 151–157 (2014)ADSGoogle Scholar
  56. 56.
    Wang K.-L., Liu Y.-X., Chang L., Roberts C.D., Schmidt S.M.: Baryon and meson screening masses. Phys. Rev. D 87, 074038 (2013)ADSGoogle Scholar
  57. 57.
    Döring M. et al.: The reaction \({\pi^+ p \to K^+ \Sigma^+}\) in a unitary coupled-channels model. Nucl. Phys. A 851, 58–98 (2011)ADSGoogle Scholar
  58. 58.
    Nicmorus D., Eichmann G., Alkofer R.: Delta and omega electromagnetic form factors in a Dyson–Schwinger/Bethe–Salpeter approach. Phys. Rev. D 82, 114017 (2010)ADSGoogle Scholar
  59. 59.
    Eichmann G., Nicmorus D.: Nucleon to Delta electromagnetic transition in the Dyson–Schwinger approach. Phys. Rev. D 85, 093004 (2012)ADSGoogle Scholar
  60. 60.
    Oettel M., Pichowsky M., von Smekal L.: Current conservation in the covariant quark–diquark model of the nucleon. Eur. Phys. J. A 8, 251–281 (2000)ADSGoogle Scholar
  61. 61.
    Bloch J.C.R., Roberts C.D., Schmidt S.M., Bender A., Frank M.R.: Nucleon form factors and a nonpointlike diquark. Phys. Rev. C 60, 062201 (1999)ADSGoogle Scholar
  62. 62.
    Maris P.: Electromagnetic properties of diquarks. Few Body Syst. 35, 117–127 (2004)ADSGoogle Scholar
  63. 63.
    Alexandrou C., de Forcrand P., Lucini B.: Evidence for diquarks in lattice QCD. Phys. Rev. Lett. 97, 222002 (2006)ADSGoogle Scholar
  64. 64.
    Babich R., Garron N., Hoelbling C., Howard J., Lellouch L. et al.: Diquark correlations in baryons on the lattice with overlap quarks. Phys. Rev. D 76, 074021 (2007)ADSGoogle Scholar
  65. 65.
    Kelly J.J.: Simple parametrization of nucleon form factors. Phys. Rev. C 70, 068202 (2004)ADSGoogle Scholar
  66. 66.
    Pohl R., Gilman R., Miller G.A., Pachucki K.: Muonic hydrogen and the proton radius puzzle. Ann. Rev. Nucl. Part. Sci. 63, 175–204 (2013)ADSGoogle Scholar
  67. 67.
    Bradford R., Bodek A., Budd H.S., Arrington J.: A new parameterization of the nucleon elastic form-factors. Nucl. Phys. Proc. Suppl. 159, 127–132 (2006)ADSGoogle Scholar
  68. 68.
    Jones M.K. et al.: G(E(p))/G(M(p)) ratio by polarization transfer in e(pol.) p \({\to}\) e p(pol.). Phys. Rev. Lett. 84, 1398–1402 (2000)ADSGoogle Scholar
  69. 69.
    Gayou O. et al.: Measurement of G(E(p))/G(M(p)) in e(pol.) p \({\to}\) e p(pol.) to \({Q^2 = 5.6\,GeV^{2}}\). Phys. Rev. Lett. 88, 092301 (2002)ADSGoogle Scholar
  70. 70.
    Punjabi V. et al.: Proton elastic form-factor ratios to \({Q^2 = 3.5\,GeV^{2}}\) by polarization transfer. Phys. Rev. C 71, 055202 (2005)ADSGoogle Scholar
  71. 71.
    Puckett A.J.R. et al.: Recoil polarization measurements of the proton electromagnetic form factor ratio to \({Q^2 = 8.5\,GeV^{2}}\). Phys. Rev. Lett. 104, 242301 (2010)ADSGoogle Scholar
  72. 72.
    Puckett A. et al.: Final analysis of proton form factor ratio data at \({\mathbf{Q^2 = 4.0}}\), 4.8 and 5.6 GeV2. Phys. Rev. C 85, 045203 (2012)ADSGoogle Scholar
  73. 73.
    Madey R. et al.: Measurements of \({G_{E}^{n}/G_{M}^{n}}\) from the 2H \({(\vec{e},e^{\prime} n)}\) reaction to \({Q^2=1.45\,{\rm GeV}/c)^2}\). Phys. Rev. Lett. 91, 122002 (2003)ADSGoogle Scholar
  74. 74.
    Riordan S., Abrahamyan S., Craver B., Kelleher A., Kolarkar A. et al.: Measurements of the electric form factor of the neutron up to \({Q^2 = 3.4 GeV^2}\) using the reaction \({^3He^{\rm pol}(e^{\rm pol},e^{\prime}n)pp}\). Phys. Rev. Lett. 105, 262302 (2010)ADSGoogle Scholar
  75. 75.
    Chang L., Liu Y.-X., Roberts C.D.: Dressed-quark anomalous magnetic moments. Phys. Rev. Lett. 106, 072001 (2011)ADSGoogle Scholar
  76. 76.
    Chang L. et al.: Imaging dynamical chiral symmetry breaking: pion wave function on the light front. Phys. Rev. Lett. 110, 132001 (2013)ADSGoogle Scholar
  77. 77.
    Cloët I.C., Chang L., Roberts C.D., Schmidt S.M., Tandy P.C.: Pion distribution amplitude from lattice-QCD. Phys. Rev. Lett. 111, 092001 (2013)ADSGoogle Scholar
  78. 78.
    Segovia J. et al.: Distribution amplitudes of light-quark mesons from lattice QCD. Phys. Lett. B 731, 13–18 (2014)ADSGoogle Scholar
  79. 79.
    Gao F., Chang L., Liu Y.-X., Roberts C.D., Schmidt S.M.: Parton distribution amplitudes of light vector mesons. Phys. Rev. D 90, 014011 (2014)ADSGoogle Scholar
  80. 80.
    Shi, C., Chang, L., Roberts, C.D., Schmidt, S.M., Tandy, P.C., Zong, H.-S.: Flavour symmetry breaking in the kaon parton distribution amplitude. Phys. Lett. B (in press) (arXiv:1406.3353 [nucl-th]). doi:10.1016/j.physletb.2014.07.057
  81. 81.
    Cloët, I.C., Bentz, W., Thomas, A.W.: Role of diquark correlations and the pion cloud in nucleon elastic form factors (arXiv:1405.5542 [nucl-th])
  82. 82.
    Aniol K. et al.: Parity-violating electron scattering from He-4 and the strange electric form-factor of the nucleon. Phys. Rev. Lett. 96, 022003 (2006)ADSGoogle Scholar
  83. 83.
    Armstrong D. et al.: Strange quark contributions to parity-violating asymmetries in the forward G0 electron-proton scattering experiment. Phys. Rev. Lett. 95, 092001 (2005)ADSGoogle Scholar
  84. 84.
    Young R.D., Roche J., Carlini R.D., Thomas A.W.: Extracting nucleon strange and anapole form factors from world data. Phys. Rev. Lett. 97, 102002 (2006)ADSGoogle Scholar
  85. 85.
    Cates G., de Jager C., Riordan S., Wojtsekhowski B.: Flavor decomposition of the elastic nucleon electromagnetic form factors. Phys. Rev. Lett. 106, 252003 (2011)ADSGoogle Scholar
  86. 86.
    Zhu H. et al.: A measurement of the electric form-factor of the neutron through polarized-d (polarized-e, e-prime n)p at \({Q^2 = 0.5\,}\) (GeV/c)2. Phys. Rev. Lett. 87, 081801 (2001)ADSGoogle Scholar
  87. 87.
    Bermuth J. et al.: The Neutron charge form-factor and target analyzing powers from polarized-He-3 (polarized-e,e-prime n) scattering. Phys. Lett. B 564, 199–204 (2003)ADSGoogle Scholar
  88. 88.
    Warren G. et al.: Measurement of the electric form-factor of the neutron at \({Q^2 = 0.5}\) and 1.0 \({GeV^2/c^2}\). Phys. Rev. Lett. 92, 042301 (2004)ADSGoogle Scholar
  89. 89.
    Glazier D. et al.: Measurement of the electric form-factor of the neutron at Q 2 = 0.3 (GeV/c)2 to 0.8 (GeV/c)2. Eur. Phys. J. A 24, 101–109 (2005)ADSGoogle Scholar
  90. 90.
    Plaster B. et al.: Measurements of the neutron electric to magnetic form-factor ratio G(En)/G(Mn) via the H-2(polarized-e, e-prime, polarized-n)H-1 reaction to Q 2 = 1.45 (GeV/c)2. Phys. Rev. C 73, 025205 (2006)ADSGoogle Scholar
  91. 91.
    Roberts, H. L.L., Chang, L., Cloët, I.C., Roberts, C.D.: Exposing the dressed quark’s mass. In: A. Radyushkin (ed.) Proceedings of the 4th Workshop on Exclusive Reactions at High Momentum Transfer, 18–21 May 2010, Newport News, Virginia. World Scientific, Singapore (2011)Google Scholar
  92. 92.
    Cloët I.C., Roberts C.D., Wilson D.J.: Baryon Properties from Continuum-QCD. AIP Conf. Proc. 1388, 121–127 (2011)ADSGoogle Scholar
  93. 93.
    Holt R.J., Roberts C.D.: Distribution functions of the nucleon and pion in the valence region. Rev. Mod. Phys. 82, 2991–3044 (2010)ADSGoogle Scholar
  94. 94.
    Roberts C.D., Holt R.J., Schmidt S.M.: Nucleon spin structure at very high x. Phys. Lett. B 727, 249–254 (2013)ADSGoogle Scholar
  95. 95.
    Cloët, I.C., Krassnigg, A., Roberts, C.D.: Dynamics, symmetries and hadron properties. In: Machner, H. and Krewald, S. (eds.) Proceedings of 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2007), Jülich, Germany, 10–14 Sep 2007, paper 125 (arXiv:0710.5746 [nucl-th])
  96. 96.
    Close F.E., Thomas A.W.: The spin and flavor dependence of parton distribution functions. Phys. Lett. B 212, 227 (1988)ADSGoogle Scholar
  97. 97.
    Cloët I., Bentz W., Thomas A.W.: Nucleon quark distributions in a covariant quark-diquark model. Phys. Lett. B 621, 246–252 (2005)ADSGoogle Scholar
  98. 98.
    Hughes E.W., Voss R.: Spin structure functions. Ann. Rev. Nucl. Part. Sci. 49, 303–339 (1999)ADSGoogle Scholar
  99. 99.
    Isgur N.: Valence quark spin distribution functions. Phys. Rev. D 59, 034013 (1999)ADSGoogle Scholar
  100. 100.
    Farrar G.R., Jackson D.R.: Pion and nucleon structure functions near x=1. Phys. Rev. Lett. 35, 1416 (1975)ADSGoogle Scholar
  101. 101.
    Brodsky S.J., Burkardt M., Schmidt I.: Perturbative QCD constraints on the shape of polarized quark and gluon distributions. Nucl. Phys. B 441, 197–214 (1995)ADSGoogle Scholar
  102. 102.
    Alexandrou C., Korzec T., Koutsou G., Lorce C., Negele J.W. et al.: Quark transverse charge densities in the \({\Delta(1232)}\) from lattice QCD. Nucl. Phys. A 825, 115–144 (2009)ADSGoogle Scholar
  103. 103.
    Alexandrou C., Korzec T., Leontiou T., Negele J.W., Tsapalis A.: Electromagnetic form-factors of the \({\Delta}\) baryon. PoS LAT2007, 149 (2007)Google Scholar
  104. 104.
    Hawes F.T., Pichowsky M.A.: Electromagnetic form factors of light vector mesons. Phys. Rev. C 59, 1743–1750 (1999)ADSGoogle Scholar
  105. 105.
    Bhagwat M.S., Maris P.: Vector meson form factors and their quark-mass dependence. Phys. Rev. C 77, 025203 (2008)ADSGoogle Scholar
  106. 106.
    Buchmann A.J., Lebed R.F.: Large N(c), constituent quarks, and N, Delta charge radii. Phys. Rev. D 62, 096005 (2000)ADSGoogle Scholar
  107. 107.
    Sanchis-Alepuz H., Williams R., Alkofer R.: Delta and Omega electromagnetic form factors in a three-body covariant Bethe–Salpeter approach. Phys. Rev. D 87, 095015 (2013)ADSGoogle Scholar
  108. 108.
    Geng L., Martin Camalich J., Vicente Vacas M.: Electromagnetic structure of the lowest-lying decuplet resonances in covariant chiral perturbation theory. Phys. Rev. D 80, 034027 (2009)ADSGoogle Scholar
  109. 109.
    Boinepalli S., Leinweber D., Moran P., Williams A., Zanotti J. et al.: Precision electromagnetic structure of decuplet baryons in the chiral regime. Phys. Rev. D 80, 054505 (2009)ADSGoogle Scholar
  110. 110.
    Aliev T., Azizi K., Savci M.: Magnetic dipole moment of the light tensor mesons in light cone QCD sum rules. J. Phys. G 37, 075008 (2010)ADSGoogle Scholar
  111. 111.
    Ledwig T., Silva A., Vanderhaeghen M.: Electromagnetic properties of the \({\Delta(1232)}\) and decuplet baryons in the self-consistent SU(3) chiral quark-soliton model. Phys. Rev. D 79, 094025 (2009)ADSGoogle Scholar
  112. 112.
    Buchmann A.J., Henley E.M.: Quadrupole moments of baryons. Phys. Rev. D 65, 073017 (2002)ADSGoogle Scholar
  113. 113.
    Buchmann A., Henley E.: Baryon octupole moments. Eur. Phys. J. A 35, 267–269 (2008)ADSGoogle Scholar
  114. 114.
    Luty M.A., March-Russell J., White M.J.: Baryon magnetic moments in a simultaneous expansion in 1/N and m s. Phys. Rev. D 51, 2332–2337 (1995)ADSGoogle Scholar
  115. 115.
    Schlumpf F.: Magnetic moments of the baryon decuplet in a relativistic quark model. Phys. Rev. D 48, 4478–4480 (1993)ADSGoogle Scholar
  116. 116.
    Butler M.N., Savage M.J., Springer R.P.: Electromagnetic moments of the baryon decuplet. Phys. Rev. D 49, 3459–3465 (1994)ADSGoogle Scholar
  117. 117.
    Krivoruchenko M., Giannini M.: Quadrupole moments of the decuplet baryons. Phys. Rev. D 43, 3763–3765 (1991)ADSGoogle Scholar
  118. 118.
    Chang L., Roberts C.D.: Sketching the Bethe–Salpeter kernel. Phys. Rev. Lett. 103, 081601 (2009)ADSMathSciNetGoogle Scholar
  119. 119.
    Chang L., Roberts C.D.: Tracing masses of ground-state light-quark mesons. Phys. Rev. C 85, 052201(R) (2012)ADSGoogle Scholar
  120. 120.
    Bashir A., Bermúdez R., Chang L., Roberts C.D.: Dynamical chiral symmetry breaking and the fermion–gauge-boson vertex. Phys. Rev. C 85, 045205 (2012)ADSGoogle Scholar
  121. 121.
    Qin S.-X., Chang L., Liu Y.-X., Roberts C.D., Schmidt S.M.: Practical corollaries of transverse Ward–Green–Takahashi identities. Phys. Lett. B 722, 384–388 (2013)ADSGoogle Scholar
  122. 122.
    Qin S.-X., Roberts C.D., Schmidt S.M.: Ward–Green–Takahashi identities and the axial-vector vertex. Phys. Lett. B 733, 202–208 (2014)ADSGoogle Scholar
  123. 123.
    Burden C.J., Roberts C.D., Thomson M.J.: Electromagnetic form factors of charged and neutral kaons. Phys. Lett. B 371, 163–168 (1996)ADSGoogle Scholar
  124. 124.
    Hecht M.B., Roberts C.D., Schmidt S.M.: Valence-quark distributions in the pion. Phys. Rev. C 63, 025213 (2001)ADSGoogle Scholar
  125. 125.
    Buchmann A.: Electromagnetic \({N \to \Delta}\) delta transition and neutron form-factors. Phys. Rev. Lett. 93, 212301 (2004)ADSGoogle Scholar
  126. 126.
    Alexandrou C., Papanicolas C., Vanderhaeghen M.: The shape of hadrons. Rev. Mod. Phys. 84, 1231 (2012)ADSGoogle Scholar
  127. 127.
    Carlson C.E.: Electromagnetic \({N \to \Delta}\) transition at high Q 2. Phys. Rev. D 34, 2704 (1986)ADSGoogle Scholar
  128. 128.
    Ash W., Berkelman K., Lichtenstein C., Ramanauskas A., Siemann R.: Measurement of the \({\gamma N\,N^*}\) form factor. Phys. Lett. B 24, 165–168 (1967)ADSGoogle Scholar
  129. 129.
    Idilbi A., Ji X.-d., Ma J.-P.: \({\Delta \to N \gamma^*}\) Coulomb quadrupole amplitude in pQCD. Phys. Rev. D 69, 014006 (2004)ADSGoogle Scholar
  130. 130.
    Gothe, R. et al.: (approved experiment E12-09-003), Nucleon Resonance Studies with CLAS12. http://www.jlab.org/exp_prog/proposals/09/PR12-09-003
  131. 131.
    Dudek J. et al.: Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab. Eur. Phys. J. A 48, 187 (2012)ADSGoogle Scholar
  132. 132.
    Aznauryan I., Burkert V.: Nucleon electromagnetic form factors and electroexcitation of low lying nucleon resonances in a light-front relativistic quark model. Phys. Rev. C 85, 055202 (2012)ADSGoogle Scholar
  133. 133.
    Aznauryan I. et al.: Electroexcitation of nucleon resonances from CLAS data on single pion electroproduction. Phys. Rev. C 80, 055203 (2009)ADSGoogle Scholar
  134. 134.
    Bartel W., Dudelzak B., Krehbiel H., McElroy J., Meyer-Berkhout U. et al.: Electroproduction of pions near the \({\Delta(1236)}\) isobar and the form-factor of \({G^{*(M)}(Q^2)}\) of the \({\gamma N \Delta}\) vertex. Phys. Lett. B 28, 148–151 (1968)ADSGoogle Scholar
  135. 135.
    Stein S., Atwood W., Bloom E.D., Cottrell R.L., DeStaebler H. et al.: Electron scattering at 4-degrees with energies of 4.5-GeV–20-GeV. Phys. Rev. D 12, 1884 (1975)ADSGoogle Scholar
  136. 136.
    Sparveris N. et al.: Investigation of the conjectured nucleon deformation at low momentum transfer. Phys. Rev. Lett. 94, 022003 (2005)ADSGoogle Scholar
  137. 137.
    Stave S. et al.: Measurements of the \({\gamma^* p \to \Delta}\) reaction at low Q 2: probing the mesonic contribution. Phys. Rev. C 78, 025209 (2008)ADSGoogle Scholar
  138. 138.
    Beck R., Krahn H., Ahrens J., Annand J., Arends H. et al.: Determination of the E2/M1 ratio in the \({\gamma N \to \Delta(1232)}\) transition from a simultaneous measurement of \({p(\overrightarrow{\gamma}, p) \pi^0}\) and \({p(\overrightarrow{\gamma}, \pi^+)n}\). Phys. Rev. C 61, 035204 (2000)ADSGoogle Scholar
  139. 139.
    Pospischil T., Bartsch P., Baumann D., Bermuth J., Bohm R. et al.: Measurement of the recoil polarization in the \({p(\overrightarrow{e}, \overrightarrow{e}^{\prime} \overrightarrow{p})\pi^0}\) reaction at the \({\Delta(1232)}\) resonance. Phys. Rev. Lett. 86, 2959–2962 (2001)ADSGoogle Scholar
  140. 140.
    Blanpied G., Blecher M., Caracappa A., Deininger R., Djalali C. et al.: \({N \to \Delta}\) transition and proton polarizabilities from measurements of \({p( \overrightarrow{\gamma}, \gamma), p (\overrightarrow{\gamma}, \pi^0)}\), and \({p(\overrightarrow{\gamma}, \pi^+)}\). Phys. Rev. C 64, 025203 (2001)ADSGoogle Scholar
  141. 141.
    Qin S.-X., Chang L., Liu Y.-X., Roberts C.D., Wilson D.J.: Interaction model for the gap equation. Phys. Rev. C 84, 042202(R) (2011)ADSGoogle Scholar
  142. 142.
    Oettel M., Hellstern G., Alkofer R., Reinhardt H.: Octet and decuplet baryons in a covariant and confining diquark–quark model. Phys. Rev. C 58, 2459–2477 (1998)ADSGoogle Scholar
  143. 143.
    Lane K.D.: Asymptotic freedom and goldstone realization of chiral symmetry. Phys. Rev. D 10, 2605 (1974)ADSGoogle Scholar
  144. 144.
    Politzer H.D.: Effective quark masses in the chiral limit. Nucl. Phys. B 117, 397 (1976)ADSGoogle Scholar
  145. 145.
    Zhang J., Bowman P.O., Coad R.J., Heller U.M., Leinweber D.B. et al.: Quark propagator in Landau and Laplacian gauges with overlap fermions. Phys. Rev. D 71, 014501 (2005)ADSGoogle Scholar
  146. 146.
    Bhagwat M., Pichowsky M., Roberts C., Tandy P.: Analysis of a quenched lattice QCD dressed quark propagator. Phys. Rev. C 68, 015203 (2003)ADSGoogle Scholar
  147. 147.
    Bhagwat M.S., Tandy P.C.: Quark-gluon vertex model and lattice-QCD data. Phys. Rev. D 70, 094039 (2004)ADSGoogle Scholar
  148. 148.
    Bhagwat M.S., Tandy P.C.: Analysis of full-QCD and quenched-QCD lattice propagators. AIP Conf. Proc. 842, 225–227 (2006)ADSGoogle Scholar
  149. 149.
    Roberts C.D.: Electromagnetic pion form-factor and neutral pion decay width. Nucl. Phys. A 605, 475–495 (1996)ADSGoogle Scholar
  150. 150.
    Brodsky S.J., Roberts C.D., Shrock R., Tandy P.C.: Confinement contains condensates. Phys. Rev. C 85, 065202 (2012)ADSGoogle Scholar
  151. 151.
    Bender A., Detmold W., Roberts C.D., Thomas A.W.: Bethe–Salpeter equation and a nonperturbative quark gluon vertex. Phys. Rev. C 65, 065203 (2002)ADSGoogle Scholar
  152. 152.
    Bhagwat M.S., Höll A., Krassnigg A., Roberts C.D., Tandy P.C.: Aspects and consequences of a dressed-quark-gluon vertex. Phys. Rev. C 70, 035205 (2004)ADSGoogle Scholar
  153. 153.
    Maris P., Roberts C.D.: \({\pi}\) and K meson Bethe–Salpeter amplitudes. Phys. Rev. C 56, 3369–3383 (1997)ADSGoogle Scholar
  154. 154.
    Maris P., Tandy P.C.: The quark photon vertex and the pion charge radius. Phys. Rev. C 61, 045202 (2000)ADSGoogle Scholar
  155. 155.
    Qin S.-X., Chang L., Liu Y.-X., Roberts C.D., Wilson D.J.: Commentary on rainbow-ladder truncation for excited states and exotics. Phys. Rev. C 85, 035202 (2012)ADSGoogle Scholar
  156. 156.
    Ball J.S., Chiu T.-W.: Analytic Properties of the Vertex Function in Gauge Theories. 1. Phys. Rev. D 22, 2542–2549 (1980)ADSGoogle Scholar
  157. 157.
    Singh J.: Anomalous magnetic moment of light quarks and dynamical symmetry breaking. Phys. Rev. D 31, 1097–1108 (1985)ADSGoogle Scholar
  158. 158.
    Bicudo P.J.A., Ribeiro J.E.F.T., Fernandes R.: The anomalous magnetic moment of quarks. Phys. Rev. C 59, 1107–1112 (1999)ADSGoogle Scholar
  159. 159.
    Kochelev N.I.: Anomalous quark chromomagnetic moment induced by instantons. Phys. Lett. B 426, 149–153 (1998)ADSGoogle Scholar
  160. 160.
    Chang L., Cloët I.C., Roberts C.D., Roberts H.L.L.: T(r)opical Dyson–Schwinger Equations. AIP Conf. Proc. 1354, 110–117 (2011)ADSGoogle Scholar
  161. 161.
    Horikawa T., Bentz W.: Medium modifications of nucleon electromagnetic form-factors. Nucl. Phys. A 762, 102–128 (2005)ADSGoogle Scholar
  162. 162.
    Cloët I., Leinweber D.B., Thomas A.W.: \({\Delta}\)-baryon magnetic moments from lattice QCD. Phys. Lett. B 563, 157–164 (2003)ADSGoogle Scholar
  163. 163.
    Frank M., Tandy P.: Gauge invariance and the electromagnetic current of composite pions. Phys. Rev. C 49, 478–488 (1994)ADSGoogle Scholar
  164. 164.
    Salam A., Delbourgo R.: Renormalizable electrodynamics of scalar and vector mesons. II. Phys. Rev. 135, B1398–B1427 (1964)ADSMathSciNetGoogle Scholar
  165. 165.
    Brodsky S.J., Hiller J.R.: Universal properties of the electromagnetic interactions of spin one systems. Phys. Rev. D 46, 2141–2149 (1992)ADSGoogle Scholar
  166. 166.
    Maris P., Tandy P.C.: Electromagnetic transition form factors of light mesons. Phys. Rev. C 65, 045211 (2002)ADSGoogle Scholar
  167. 167.
    Oettel M., Alkofer R., von Smekal L.: Nucleon properties in the covariant quark diquark model. Eur. Phys. J. A 8, 553–566 (2000)ADSGoogle Scholar
  168. 168.
    Cotanch S.R., Maris P.: QCD based quark description of \({\pi \pi}\) scattering up to the \({\sigma}\) and \({\rho}\) region. Phys. Rev. D 66, 116010 (2002)ADSGoogle Scholar

Copyright information

© Springer-Verlag Wien (outside the USA) 2014

Authors and Affiliations

  • Jorge Segovia
    • 1
  • Ian C. Cloët
    • 1
  • Craig D. Roberts
    • 1
  • Sebastian M. Schmidt
    • 2
  1. 1.Physics DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Institute for Advanced SimulationForschungszentrum Jülich and JARAJülichGermany

Personalised recommendations