Few-Body Systems

, Volume 55, Issue 8–10, pp 1029–1032

Sturmian Approach to Single Photoionization of CH4

  • C. M. Granados-Castro
  • L. U. Ancarani
  • G. Gasaneo
  • D. M. Mitnik
Article

Abstract

Single photoionization cross sections for two different ground state orbitals of the molecule CH4 are presented. An angular averaged molecular model potential is used to represent the interaction of the ionized electrons, whose continuum wave functions are calculated within a generalized Sturmian functions approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buckingham R.A., Massey H.S.W., Tibbs S.R.: A self-consistent field for methane and its applications. Proc. Roy. Soc. A 178, 119 (1941)ADSCrossRefMATHGoogle Scholar
  2. 2.
    Moccia, R.: One-center basis set SCF, MO’s. I. HF, CH4, and SiH4. J. Chem. Phys. 40, 2164 (1964)Google Scholar
  3. 3.
    Dalgarno A.: The photo-ionization cross section of methane. Proc. Phys. Soc. A 65, 663 (1952)ADSCrossRefGoogle Scholar
  4. 4.
    Brosolo, M., Decleva, P., Lisini, A.: Accurate variational determination of continuum wavefunctions by a one-centre expansion in a spline basis. An application to H\({^{+}_{2}}\) and HeH2+ photoionization. J. Phys. B: At. Mol. Opt. Phys. 25, 3345 (1992)Google Scholar
  5. 5.
    Venuti M., Stener M., Decleva P.: Valence photoionization of C6H6 by the B-spline one-centre expansion density functional method. Chem. Phys. 234, 95 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Stener M., Decleva P.: Photoionization of first and second row hydrides by the B-spline one-centre expansion density functional method. J. Electron Spectrosc. Relat. Phenom. 94, 195 (1998)CrossRefGoogle Scholar
  7. 7.
    Gasaneo, G., Ancarani, L.U., Mitnik, D.M., Randazzo, J.M., Frapiccini, A.L., Colavecchia, F.D.: Three-Body coulomb problems with generalized sturmian functions. In: Hoggan, P.E. (ed.) Proceedings of MEST 2012: Exponential Type Orbitals for Molecular Electronic Structure Theory. Adv. Quantum Chem. 67 153 (2013)Google Scholar
  8. 8.
    Mitnik, D.M., Colavecchia, F.D., Gasaneo, G., Randazzo, J.M.: Computational methods for generalized Sturmians basis. Comput. Phys. Commun. 182, 1145 (2011)Google Scholar
  9. 9.
    Fernández-Menchero, L., Otranto, S.: Single ionization of CH4 by bare ions: Fully differential cross sections. Phys. Rev. A 82, 022712 (2010)Google Scholar
  10. 10.
    Levine, I.N.: Quantum Chemistry. Prentice-Hall, New Delhi (2006)Google Scholar
  11. 11.
    Steinborn, E.O., Filter, E.: Translations of fields represented by spherical-harmonic expansions for molecular calculations. Theor. Chim. Acta (Berl.) 38, 247 (1975)Google Scholar
  12. 12.
    Champion C., Hanssen J., Hervieux P.A.: Theoretical differential and total cross sections of water-molecule ionization by electron impact. Phys. Rev. A 65, 022710 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Champion, C., Boudrioua, O., Dal Cappello, C.: Water molecule ionization by charged particles: a short review. J. Phys.: Conf. Ser. 101, 012010 (2008)Google Scholar
  14. 14.
    Madison, D.H., Al-Hagan, O.: The distorted-wave Born approach for calculating electron-impact ionization of molecules. J. At. Mol. Opt. Phys. 2010, 1 (2010)Google Scholar
  15. 15.
    Dal Cappello C., Hervieux P.A., Charpentier I., Ruiz-Lopez F.: Ionization of the cytosine molecule by protons: Ab initio calculation of differential and total cross sections. Phys. Rev. A 78, 042702 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Dal Cappello, C., Charpentier, I., Houamer, S., Hervieux, P.A., Ruiz-Lopez, M.F., Mansouri, C., Roy, A.C.: Triple-differential cross sections for the ionization of thymine by electrons and positrons. J. Phys. B: At. Mol. Opt. Phys. 45, 175205 (2012)Google Scholar
  17. 17.
    Kilcoyne D.A.L., Nordholm S., Hush N.S.: Diffraction analysis of the photoionisation cross sections of water, ammonia and methane. Chem. Phys. 107, 213 (1986)ADSCrossRefGoogle Scholar
  18. 18.
    Stener, M., Decleva, P.: Photoionization of CH4, SiH4, BH3 and AlH3 by the B-spline one-centre expansion density functional method. J. Electron Spectrosc. Relat. Phenom. 104, 135 (1999)Google Scholar
  19. 19.
    Gao J., Madison D.H., Peacher J.L.: Distorted wave Born and three-body distorted wave Born approximation calculations of the fully differential cross section for electron-impact ionization of nitrogen molecules. J. Chem. Phys. 123, 204314 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • C. M. Granados-Castro
    • 1
    • 2
  • L. U. Ancarani
    • 1
  • G. Gasaneo
    • 2
  • D. M. Mitnik
    • 3
  1. 1.Equipe TMS, UMR CNRS 7565Université de LorraineMetzFrance
  2. 2.Departamento de FísicaUniversidad Nacional del SurBahía BlancaArgentina
  3. 3.Instituto de Astronomía y Física del Espacio (IAFE), C1428EGA and Departamento de Física, FCEyNUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations