Few-Body Systems

, Volume 55, Issue 4, pp 241–253 | Cite as

Bound State Solutions of the Dirac Equation for the Eckart Potential with Coulomb-Like Yukawa-Like Tensor Interactions

  • Akpan N. IkotEmail author
  • Elham Maghsoodi
  • Saber Zarrinkamar
  • Leyla Naderi
  • Hassan Hassanabadi


In this paper, we present the approximate bound state solutions of the Dirac equation within the framework of spin and pseudospin symmetries for Eckart potential for arbitrary κ—state using Nikiforov–Uvarov method. The tensor interactions of Coulomb-like and Yukawa-like form are considered and the effects of these tensors and the degeneracy removing role are discussed in detail. Numerical results and figures to show the effect of the tensor interactions are also reported.


Dirac Equation Spin Symmetry Symmetry Limit Tensor Interaction Pseudospin Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arima A., Harvey M., Shimizu K.: Pseudo LS coupling and pseudo SU3 coupling schemes. Phys. Lett. B 30, 517 (1969)ADSCrossRefGoogle Scholar
  2. 2.
    Hecht K., Adler A.: Generalized seniority for favored J ≠ 0 pairs in mixed configurations. Nucl. Phys. A 137, 129 (1969)ADSCrossRefGoogle Scholar
  3. 3.
    Hassanabadi H., Yazarloo B.H., Zarrinkamar S., Rahimov H.: Spin and pseudospin symmetries of Dirac equation and the Yukawa potential as the tensor interaction. Commun. Theor. Phys. 57, 339 (2012)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Ikot, A.N., Maghsoodi, E., Zarrinkamar, S., Hassanabadi, H.: Relativistic spin and pseudospin symmetries of inversely quadratic Yukawa-like plus mobius square potentials including a Coulomb-like tensor interaction. Few-Body Syst. doi: 10.1007/S00601-013-0701-6
  5. 5.
    Hassanbadi H., Maghsoodi E., Ikot A.N., Zarrinkmar S.: Approximate arbitrary-state solutions of Dirac equation for modified deformed hylleraas and modified Eckart potentials by the NU method. Appl. Math. compt. 219, 9388 (2013)CrossRefGoogle Scholar
  6. 6.
    Ikot A.N., Maghsoodi E., Antia A.D., Zarrinkamar S., Hassanabadi H.: Approximate-state solutions to the Dirac Mobius square—Yukawa and Mobius square—quasi Yukawa problems under pseudospin and spin symmetry limits with Coulomb-like tensor interaction. Can. J. Phys. 91, 560 (2013)CrossRefGoogle Scholar
  7. 7.
    Hassanabadi H., Maghsoodi E., Zarrinkamar S., Rahimov H.: Approximate any l-state solutions of Dirac equation for modified deformed hylleraas potential by the Nikiforov Uvarov method. Chin. Phys. B 21, 120302 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Ikot A.N., Hassanabadi H., Yazarloo B.H., Zarrinkamar S.: Pseudospin snd spin symmetry of Dirac-generalized Yukawa problems with a Colulomb-like tensor interaction via SUSYQM. Int. J. Mod. Phys. E 22, 1350048 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Dong S.H., Qiang W.C., Sun G.H., Bezerra V.B.: Analytical approximations to the l-wave solutions of the Schrödinger equation with the Eckart potential. J. Phys. A: Math. Theor. 40, 10535 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Dong S.H.: Factorization Method in Quantum Mechanics. Springer, Dordreht (2007)zbMATHGoogle Scholar
  11. 11.
    Greiner W.: Relativistic Quantum Mechanics. Springer, Berlin (2000)zbMATHGoogle Scholar
  12. 12.
    landau L.D., Lifshitz E.M.: Quantum Mechanics, Non-relativistic Theory. Pergamon, New York (1977)Google Scholar
  13. 13.
    Maghsoodi E., Hassanabadi H., Aydogdu O.: Relativistic symmetries of the Dirac equation under the nuclear Woods–Saxon potential. Phys. Scr. 86, 015005 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Hassanabadi H., Maghsoodi E., Ikot A.N., Zarrinkmar S.: Dirac equation under Manning–Rosen potential and Hulthén tensor interaction. Eur. Phys. J. Plus 128, 79 (2013)CrossRefGoogle Scholar
  15. 15.
    Bahar M.K., Yasuk F.: Bound states of the Dirac equation with position-dependent mass for the Eckart potential. Chin. Phys. B 22, 010301 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Hassanbadi H., Maghsoodi E., Ikot A.N., Zarrinkmar S.: Approximate arbitrary-state solutions of Dirac equation for modified deformed hylleraas and modified Eckart potentials by the NU method. Appl. Math. Compt. 219, 9388 (2013)CrossRefGoogle Scholar
  17. 17.
    Hassanbadi, H., Zarrinkmar, S., Maghsoodi, E.: Dirac equation with vector and scalar cornell potentials and an external magnetic field. Ann. Phys. (Berlin), 1–7 (2013) doi: 10.1002/andp.201300102
  18. 18.
    Eckart C.: The penetration of a potential barrier by electrons. Phys. Rev. 35, 1303 (1930)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Boonserm P., Visser M.: Quasi-normal frequencies: key analytic results. JHEP 1103, 073 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Cooper F., Khare A., Sukhatme U.: Supersymmetry and quantum mechanics. Phys. Rep. 251, 267 (1995)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    Weiss J.J.: Mechanism of proton transfer in acid-base reactions. J. Chem. Phys. 41, 1120 (1964)ADSCrossRefGoogle Scholar
  22. 22.
    Zou X., Yi L.Z., Jia C.S.: Bound states of the Dirac equation with vector and scalar Eckart potentials. Phys. Lett. A 346, 54 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Wei G.W., Long C.Y., Duan X.Y., Dong S.H.: Arbitrary l-wave scattering state solutions of the Schrödinger equation for the Eckart potential. Phys. Scr. 77, 035001 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Nikforov A.F., Uvarov V.B.: Special Functions of Mathematical Physics. Birkhauser, Basel (1988)CrossRefGoogle Scholar
  25. 25.
    Aydogdu O., Sever R.: Exact pseudospin symmetric solution of the Dirac equation for pseudoharmonic potential in the presence of tensor potential. Few-Body Syst. 47, 103 (2010)CrossRefGoogle Scholar
  26. 26.
    Ginocchio J.N., Leviatan A., Meng J., Zhou S.G.: Test of pseudospin symmetry in deformed nuclei. Phys. Rev. C 69, 034303 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Ginocchio J.N.: Pseudospin as a relativistic symmetry. Phys. Rev. Lett. 78, 436 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    Ginocchio J.N.: Relativistic symmetries in nuclei and hadrons. Phys. Rep. 414(4–5), 165–261 (2005)ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    Pekeris C.I.: The rotation–vibration coupling in diatomic molecules. Phys. Rev. 45, 98 (1934)ADSCrossRefGoogle Scholar
  30. 30.
    Tezcan C., Sever R.: Ageneral approach for the exact solution of the Schrödinger equation. Int. J. Theor. Phys. 48, 337 (2009)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Akpan N. Ikot
    • 1
    Email author
  • Elham Maghsoodi
    • 2
  • Saber Zarrinkamar
    • 3
  • Leyla Naderi
    • 4
  • Hassan Hassanabadi
    • 2
  1. 1.Theoretical Physics Group, Department of PhysicsUniversity of Uyo-NigeriaUyoNigeria
  2. 2.Department of Basic Sciences, Shahrood BranchIslamic Azad UniversityShahroodIran
  3. 3.Department of Basic Sciences, Garmsar BranchIslamic Azad universityGarmsarIran
  4. 4.Physics DepartmentSemnan UniversitySemnanIran

Personalised recommendations