Advertisement

Few-Body Systems

, Volume 55, Issue 8–10, pp 659–665 | Cite as

Ab Initio Nuclear Structure Theory: From Few to Many

  • Robert RothEmail author
  • Angelo Calci
  • Joachim Langhammer
  • Sven Binder
Article

Abstract

We summarize recent advances in ab initio nuclear structure theory, aiming to connect few- and many-body systems in a coherent theoretical framework. Starting from chiral effective field theory to construct the nuclear Hamiltonian and the similarity renormalization group to soften it, we address several many-body approaches that have seen major developments over the past few years. We show that the domain of ab initio nuclear structure theory has been pushed well beyond the p-shell and that quantitative predictions connected to QCD via chiral effective field theory are becoming possible all the way from the proton to the neutron drip line up into the medium-mass regime.

Keywords

Neutron Drip Line Chiral Effective Field Theory Unitary Correlation Operator Method Similarity Renormalization Group Triple Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Machleidt R., Entem D.R.: Chiral effective field theory and nuclear forces. Phys. Rep. 503, 1 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Epelbaum E., Hammer H.-W., Meißner U.-G.: Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Entem D.R., Machleidt R.: Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 041001(R) (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Navratil P.: Local three-nucleon interaction from chiral effective field theory. Few Body Syst. 41, 117 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Gazit D., Quaglioni S., Navratil P.: Three-nucleon low-energy constants from the consistency of interactions and currents in chiral effective field theory. Phys. Rev. Lett. 103, 102502 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Bernard V., Epelbaum E., Krebs H., Meißner U.-G.: Subleading contributions to the chiral three-nucleon force: long-range terms. Phys. Rev. C 77, 064004 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Bernard V., Epelbaum E., Krebs H., Meissner U.-G.: Subleading contributions to the chiral three-nucleon force II: short-range terms and relativistic corrections. Phys. Rev. C 84, 054001 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Epelbaum E., Glöckle W., Meißner U.-G.: The two-nucleon system at next-to-next-to-next-to-leading order. Nucl. Phys. A 747, 362 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Epelbaum E., Nogga A., Glöckle W. et al.: Three-nucleon forces from chiral effective field theory. Phys. Rev. C 66, 064001 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Ekström A., Baardsen G., Forssén C. et al.: Optimized chiral nucleon-nucleon interaction at next-to-next-to-leading order. Phys. Rev. Lett. 110, 192502 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Roth, R., Calci, A., Langhammer, J., Binder, S.: Evolved Chiral NN+3N Hamiltonians for Ab Initio Nuclear Structure Calculations. arXiv:1311.3563 (2013)
  12. 12.
    Roth R., Neff T., Feldmeier H.: Nuclear structure in the framework of the unitary correlation operator method. Prog. Part. Nucl. Phys. 65, 50 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Bogner S.K., Furnstahl R.J., Schwenk A.: From low-momentum interactions to nuclear structure. Prog. Part. Nucl. Phys. 65, 94 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Bogner S.K., Furnstahl R.J., Perry R.J.: Similarity renormalization group for nucleon–nucleon interactions. Phys. Rev. C 75, 061001(R) (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Pieper S.C., Varga K., Wiringa R.B.: Quantum Monte Carlo calculations of A = 9,10 nuclei. Phys. Rev. C 66, 044310 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Pieper S.C., Wiringa R.B., Carlson J.: Quantum Monte Carlo calculations of excited states in A = 6–8 nuclei. Phys. Rev. C 70, 054325 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Navrátil P., Vary J.P., Barrett B.R.: Properties of 12C in the Ab initio nuclear shell model. Phys. Rev. Lett. 84, 5728 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    Barrett B.R., Navrátil P., Vary J.P.: Ab initio no core shell model. Prog. Part. Nucl. Phys. 69, 131 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Roth R., Navrátil P.: Ab initio study of 40Ca with an importance-truncated no-core shell model. Phys. Rev. Lett. 99, 092501 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Roth R.: Importance truncation for large-scale configuration interaction approaches. Phys. Rev. C 79, 064324 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Roth R., Langhammer J., Calci A. et al.: Similarity-transformed chiral NN+3N interactions for the Ab initio description of 12-C and 16-O. Phys. Rev. Lett. 107, 072501 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Hagen G., Papenbrock T., Dean D.J., Hjorth-Jensen M.: Ab initio coupled-cluster approach to nuclear structure with modern nucleon–nucleon interactions. Phys. Rev. C 82, 034330 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Somà à V., Duguet T., Barbieri C.: Ab initio self-consistent Gorkov-Green’s function calculations of semimagic nuclei: formalism at second order with a two-nucleon interaction. Phys. Rev. C 84, 064317 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Tsukiyama K., Bogner S.K., Schwenk A.: In-medium similarity renormalization group for nuclei. Phys. Rev. Lett. 106, 222502 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Binder S., Langhammer J., Calci A. et al.: Ab initio calculations of medium-mass nuclei with explicit chiral 3N interactions. Phys. Rev. C 87, 021303 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Binder S., Piecuch P., Calci A. et al.: Extension of coupled-cluster theory with a noniterative treatment of connected triply excited clusters to three-body Hamiltonians. Phys. Rev. C 88, 054319 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Roth R., Binder S., Vobig K. et al.: Ab initio calculations of medium-mass nuclei with normal-ordered chiral NN+3N interactions. Phys. Rev. Lett. 109, 052501 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Hergert H., Bogner S.K., Binder S. et al.: In-medium similarity renormalization group with chiral two- plus three-nucleon interactions. Phys. Rev. C 87, 034307 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Hergert H., Binder S., Calci A. et al.: Ab initio calculations of even oxygen isotopes with chiral two-plus-three-nucleon interactions. Phys. Rev. Lett. 110, 242501 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Otsuka T., Suzuki T., Holt J.D. et al.: Three-body forces and the limit of oxygen isotopes. Phys. Rev. Lett. 105, 032501 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Hagen G., Hjorth-Jensen M., Jansen G.R. et al.: Continuum effects and three-nucleon forces in neutron-rich oxygen isotopes. Phys. Rev. Lett. 108, 242501 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Hupin G., Langhammer J., Navrátil P. et al.: Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces. Phys. Rev. C 88, 054622 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Navrátil P., Kamuntavicius G.P., Barrett B.R.: Few-nucleon systems in a translationally invariant harmonic oscillator basis. Phys. Rev. C 61, 044001 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Robert Roth
    • 1
    Email author
  • Angelo Calci
    • 1
  • Joachim Langhammer
    • 1
  • Sven Binder
    • 1
  1. 1.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations