Advertisement

Few-Body Systems

, Volume 55, Issue 2, pp 159–170 | Cite as

Influence of Superconducting Leads Energy Gap on Electron Transport Through Double Quantum Dot by Markovian Quantum Master Equation Approach

  • E. Afsaneh
  • H. YavariEmail author
Article

Abstract

The superconducting reservoir effect on the current carrying transport of a double quantum dot in Markovian regime is investigated. For this purpose, a quantum master equation at finite temperature is derived for the many-body density matrix of an open quantum system. The dynamics and the steady-state properties of the double quantum dot system for arbitrary bias are studied. We will show that how the populations and coherencies of the system states are affected by superconducting leads. The energy parameter of system contains essentially four contributions due to dots system-electrodes coupling, intra dot coupling, two quantum dots inter coupling and superconducting gap. The coupling effect of each energy contribution is applied to currents and coherencies results. In addition, the effect of energy gap is studied by considering the amplitude and lifetime of coherencies to get more current through the system.

Keywords

Density Matrix Steady State Current Open Quantum System Lamb Shift Rotate Wave Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beloborodov I.S., Lopatin A.V., Vinokur V.M., Efetov K.B.: Granular electronic systems. Rev. Mod. Phys. 79, 469 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Deacon R.S., Tanaka Y., Oiwa A., Sakano R., Yoshida K., Shibata K., Hirakawa K., Tarucha S.: Tunneling spectroscopy of andreev energy levels in a quantum dot coupled to a superconductor. Phys. Rev. Lett 104, 076805 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Deacon, R.S., Tanaka, Y., Oiwa, A., Sakano, R., Yoshida, K., Shibata, K., Hirakawa, K., Tarucha, S.: Kondo enhanced Andreev transport in single self-assembled in as quantum dots contacted with normal and superconducting leads. Phys. Rev. B 81, 121308(R) (2010)Google Scholar
  4. 4.
    Kanai Y., Deacon R.S., Oiwa A., Yoshida K., Shibata K., Hirakawa K., Tarucha S.: Electrical control of Kondo effect and superconducting transport in a side-gated in as quantum dot Josephson junction. Phys. Rev. B 82, 054512 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Buizert C., Oiwa A., Shibata K., Hirakawa K., Tarucha S.: Kondo universal scaling for a quantum dot coupled to superconducting leads. Phys. Rev. Lett. 99, 136806 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Kosov D.S., Prosen T., Zunkovi B.: A markovian kinetic equation approach to electron transport through a quantum dot coupled to superconducting leads. J. Phys.: Condens. Matter 25, 075702 (2013)ADSGoogle Scholar
  7. 7.
    Dzhioev A.A., Kosov D.S.: Nonequilibrium perturbation theory in Liouville–Fock space for inelastic electron transport. J. Phys.: Condens. Matter 24, 225304 (2012)ADSGoogle Scholar
  8. 8.
    Harbola U., Esposito M., Mukamel S.: Quantum master equation for electron transport through quantum dots and single molecules. Phys. Rev. B 74, 235309 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Gurvitz S.A., Prager Y.S.: Microscopic derivation of rate equations for quantum transport. Phys. Rev. B 53, 15932 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    Keldysh, L.V.: Diagram technique for nonequilibrium processes. Zh. Eksp. Teor. Fiz. 47, 1515 (1965)Google Scholar
  11. 11.
    Keldysh, L.V.: Diagram technique for nonequilibrium processes. Sov. Phys. JETP 20, 1018 (1965)Google Scholar
  12. 12.
    Haug H., Jauho A.-P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, Berlin (1995)Google Scholar
  13. 13.
    Imry Y., Landauer R.: Conductance viewed as transmission. Rev. Mod. Phys. 71, S306 (1999)CrossRefGoogle Scholar
  14. 14.
    Sautet P., Joachim C.: Electronic transmission coefficient for the single-impurity problem in the scattering-matrix approach. Phys. Rev. B 38, 12238 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    Cerda J., Van Hove M.A., Sautet P., Salmeron M.: Efficient method for the simulation of STM images. I. Generalized green-function formalism. Phys. Rev. B 56, 15885 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    Sautet P., Joachim C.: Calculation of the benzene on rhodium STM images. Chem. Phys. Lett. 185, 23 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    Kosov D.S., Prosen T., Zunkovic B.: Lindblad master equation approach to superconductivity in open quantum systems. J. Phys. A: Math. Theor. 44, 462001 (2011)ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    Gorini V., Kosakowski A., Sudarshan E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)ADSCrossRefGoogle Scholar
  19. 19.
    Zedler P., Schaller G., Kiesslich G., Emary C., Brandes T.: Weak-coupling approximations in non-Markovian transport. Phys. Rev. B 80, 045309 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Esposito M., Galperin M.: Self-consistent quantum master equation approach to molecular transport. J. Phys. Chem. C 114, 20362 (2010)CrossRefGoogle Scholar
  21. 21.
    Lindblad G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Suàrez A., Silbey R., Oppenheim I.: Memory effects in the relaxation of quantum open systems. J. Chem. Phys. 97, 5101 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    Leijnse M., Wegewijs M.R.: Kinetic equations for transport through single-molecule transistors. Phys. Rev. B 78, 235424 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Cohen-Tannoudji C., Dupont-Roc J., Grynberg G.: Atom–Photon Interactions: Basics Processes and Applications. Wiley, New York (1992)Google Scholar
  25. 25.
    Gardiner C.W., Zoller P.: Quantum Noise. Springer, Berlin (2000)CrossRefzbMATHGoogle Scholar
  26. 26.
    Weiss U.: Quantum Dissipative Systems. World Scientific, Singapore (2000)Google Scholar
  27. 27.
    Mukamel S.: Principles of Nonlinear Optical Spectroscopy. Oxford University Press, New York (1995)Google Scholar
  28. 28.
    Brune Ph., Bruder C., Schoeller H.: Photon-assisted transport through ultrasmall quantum dots: influence of intradot transitions. Phys. Rev. B 56, 4730 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    Li X.Q., Luo J., Yang Y.G., Cui P., Yan Y.J.: Quantum master-equation approach to quantum transport through mesoscopic systems. Phys. Rev. B 71, 205304 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Welack S., Schreiber M., Kleinekathofer U.: The influence of ultrafast laser pulses on electron transfer in molecular wires studied by a non-Markovian density-matrix approach. J. Chem. Phys. 124, 044712 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Fransson J., Rasander M.: Pauli spin blockade in weakly coupled double quantum dots. Phys. Rev. B 73, 205333 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    Rammer J., Shelankov A.L., Wabnig J.: Quantum measurement in charge representation. Phys. Rev. B 70, 115327 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    Pedersen J.N., Wacker A.: Tunneling through nanosystems: combining broadening with many-particle states. Phys. Rev. B 72, 195330 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Gurvitz S.A., Mozyrsky D., Berman G.P.: Coherent effects in magnetotransport through Zeeman-split levels. Phys. Rev. B 72, 205341 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    Dubi Y., DiVentra M.: Maintaining the local critical temperature of thermally out-of-equilibrium superconducting wires below the critical value. Phys. Rev. B 80, 214510 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Faller S.P., Donarini A., Grifoni M.: Subgap features due to quasiparticle tunneling in quantum dots coupled to superconducting leads. Phys. Rev. B 87, 155439 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    van der Wiel W.G., Franceschi S.D., Elzerman J.M., Fujisawa T., Tarucha S., Kouwenhowen L.P.: Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1 (2003)CrossRefGoogle Scholar
  38. 38.
    Nakamura Y., Pashkin Y., Tsai J.S.: Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature (London) 398, 786 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    Vion D., Aassime A., Cottet A., Joyez P., Pothier H., Urbina C., Esteve D., Devoret M.H.: Manipulating the quantum state of an electrical circuit. Science 296, 886 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    Breuer H.-P., Petruccione F.: The Theory Of Open Quantum Systems. Oxford University Press, London (2002)zbMATHGoogle Scholar
  41. 41.
    de Gennes P.G.: Superconductivity of Metals and Alloys. Westview Press, NewYork (1990)Google Scholar
  42. 42.
    Bruus H., Flensberg K.: Introduction to Quantum Field Theory in Condensed Matter Physics. Oxford University Press, London (2002)Google Scholar
  43. 43.
    Mahan G.D.: Many-Particle Physics. Plenum Press, New York (1990)CrossRefGoogle Scholar
  44. 44.
    Bruder C., Schoeller H.: Charging effects in ultrasmall quantum dots in the presence of time-varing fields. Phys. Rev. Lett. 72, 1076 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of IsfahanHezarJarib, IsfahanIran

Personalised recommendations