Few-Body Systems

, Volume 55, Issue 8–10, pp 1013–1016 | Cite as

Progress on Light-Ion Fusion Reactions with Three-Nucleon Forces

  • G. HupinEmail author
  • S. Quaglioni
  • J. Langhammer
  • P. Navrátil
  • A. Calci
  • R. Roth


The description of structural and dynamical properties of nuclei starting from the fundamental interaction between nucleons has been a long-standing goal in nuclear physics. The ab initio No-Core Shell Model combined with the Resonating-Group Method (NCSM/RGM) is capable of addressing both structural and reaction properties of light-nuclei. While promising results have already been achieved starting from a two-body Hamiltonian, a truly realistic prediction of nuclear observables requires the treatment of the three-nucleon interaction. Using similarity-renormalization-group evolved two- and three-nucleon interactions, we will present recent applications to n-4He scattering process when accounting for the chiral two- plus three-nucleon interaction versus the chiral two-nucleon interaction. We compare our results to phase shifts obtained from R-matrix analysis of data up to 16 MeV neutron energy, below the d-3H threshold.


Nucleon Interaction Incident Neutron Energy Unitary Correlation Operator Method Similarity Renormalization Group Purple Cross 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baroni S., Navrátil P., Quaglioni S.: Ab initio description of the exotic unbound 7He nucleus. Phys. Rev. Lett. 110(2), 022–505 (2013)CrossRefGoogle Scholar
  2. 2.
    Baroni S., Navrátil P., Quaglioni S.: Unified ab initio approach to bound and unbound states: no-core shell model with continuum and its application to 7He. Phys. Rev. C 87(3), 034–326 (2013)CrossRefGoogle Scholar
  3. 3.
    Bogner S.K., Furnstahl R.J., Perry R.J.: Similarity renormalization group for nucleon–nucleon interactions. Phys. Rev. C 75(6), 061–001 (2007)Google Scholar
  4. 4.
    Drosg, M.: Interaction of fast neutrons with4He,3He, and 1H: additional and improved data.[20 MeV, differential cross sections, angular distributions]. Tech. Rep. May, Los Alamos Scientific Lab., N. Mex.(USA) (1978)Google Scholar
  5. 5.
    Entem D.R., Machleidt R.: Accurate charge-dependent nucleon–nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68(4), 041–001 (2003)Google Scholar
  6. 6.
    Hale, G.M. Private communicationGoogle Scholar
  7. 7.
    Hergert H., Roth R.: Unitary correlation operator method from a similarity renormalization group perspective. Phys. Rev. C 75(5), 051–001 (2007)Google Scholar
  8. 8.
    Hupin, G., Langhammer, J., Navrátil, P., Quaglioni, S., Calci, A., Roth, R.: Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces. (2013) ArXiv p 18, 1308.2700Google Scholar
  9. 9.
    Navrátil P.: Local three-nucleon interaction from chiral effective field theory. Few-Body Syst 41(3-4), 117–140 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Nollett K.M., Pieper S.C., Wiringa R.B., Carlson J., Hale G.M.: Quantum monte carlo calculations of neutron-α scattering. Phys. Rev. Lett. 99(2), 022–502 (2007)CrossRefGoogle Scholar
  11. 11.
    Quaglioni S., Navrátil P.: Ab initio many-body calculations of n-H3, n-He4, p-He3,4, and n-Be10 scattering. Phys. Rev. Lett. 101(9), 092–501 (2008)CrossRefGoogle Scholar
  12. 12.
    Quaglioni S., Navrátil P.: Ab initio many-body calculations of nucleon-nucleus scattering. Phys. Rev. C 79(4), 044–606 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • G. Hupin
    • 1
    Email author
  • S. Quaglioni
    • 1
  • J. Langhammer
    • 2
  • P. Navrátil
    • 3
  • A. Calci
    • 2
  • R. Roth
    • 2
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  3. 3.TRIUMFVancouverCanada

Personalised recommendations