Advertisement

Few-Body Systems

, Volume 55, Issue 5–7, pp 351–356 | Cite as

Nucleon-to-Pion Transition Distribution Amplitudes: A Challenge for P̄ANDA

  • B. Pire
  • K. Semenov-Tian-ShanskyEmail author
  • L. Szymanowski
Article

Abstract

Baryon-to-meson transition distribution amplitudes (TDAs) appear as building blocks in the collinear factorized description of amplitudes for a class of hard exclusive reactions, prominent examples being hard exclusive pion electroproduction off a nucleon in the backward region and baryon-antibaryon annihilation into a pion and a lepton pair or a charmonium. Baryon-to-meson TDAs extend both the concepts of generalized parton distributions and baryon distribution amplitudes encoding valuable complementary information on the hadronic structure. We review the basic properties of baryon-to-meson TDAs and discuss the perspectives for the experimental access with the P̄ANDA detector.

Keywords

Differential Cross Section Lepton Pair Heavy Quarkonia Light Meson Nucleon Form Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lutz, M.F.M., et al.: PANDA collaboration. Physics performance report for PANDA: Strong interaction studies with antiprotons. arXiv:0903.3905[hep-ex]Google Scholar
  2. 2.
    Wiedner U.: Future prospects for hadron physics at PANDA. Prog. Part. Nucl. Phys. 66, 477–518 (2011)CrossRefADSGoogle Scholar
  3. 3.
    Lepage G.P., Brodsky S.J.: Exclusive processes in perturbative quantum chromodynamics. Phys. Rev. D 22, 2157 (1980)CrossRefADSGoogle Scholar
  4. 4.
    Chernyak V.L., Zhitnitsky A.R.: Asymptotic behavior of exclusive processes in QCD. Phys. Rep. 112, 173 (1984)CrossRefADSGoogle Scholar
  5. 5.
    Stefanis N.G.: The physics of exclusive reactions in QCD: Theory and phenomenology. Eur. Phys. J. Direct C 7, 1 (1999)Google Scholar
  6. 6.
    Frankfurt L.L., Pobylitsa P.V., Polyakov M.V., Strikman M.: Hard exclusive pseudoscalar meson electroproduction and spin structure of a nucleon. Phys. Rev. D 60, 014010 (1999)CrossRefADSGoogle Scholar
  7. 7.
    Lansberg, J.P., Pire, B., Szymanowski, L.: Hard exclusive electroproduction of a pion in the backward region. Phys. Rev. D 75, 074004 (2007) [Erratum-ibid. D 77, 019902]Google Scholar
  8. 8.
    Lansberg J.P., Pire B., Semenov-Tian-Shansky K., Szymanowski L.: A consistent model for π N transition distribution amplitudes and backward pion electroproduction. Phys. Rev. D 85, 054021 (2012)CrossRefADSGoogle Scholar
  9. 9.
    Kubarovskiy, A.: Electroproduction of π 0 at high momentum transfers in non-resonant region with CLAS. JLAB-PHY-12-1415Google Scholar
  10. 10.
    Lansberg J.P., Pire B., Szymanowski L.: Production of a pion in association with a high-Q 2 dilepton pair in antiproton-proton annihilation at GSI-FAIR. Phys. Rev. D 76, 111502 (2007)CrossRefADSGoogle Scholar
  11. 11.
    Lansberg J.P., Pire B., Semenov-Tian-Shansky K., Szymanowski L.: Accessing baryon to meson transition distribution amplitudes in meson production in association with a high invariant mass lepton pair at GSI-FAIR with PANDA. Phys. Rev. D 86, 114033 (2012)CrossRefADSGoogle Scholar
  12. 12.
    Pire B., Semenov-Tian-Shansky K., Szymanowski L.: QCD description of charmonium plus light meson production in antiproton-nucleon annihilation. Phys. Lett. B 724, 99–107 (2013)CrossRefADSGoogle Scholar
  13. 13.
    Pire B., Semenov-Tian-Shansky K., Szymanowski L.: A spectral representation for baryon to meson transition distribution amplitudes. Phys. Rev. D 82, 094030 (2010)CrossRefADSGoogle Scholar
  14. 14.
    Pire B., Semenov-Tian-Shansky K., Szymanowski L.: π N transition distribution amplitudes: Their symmetries and constraints from chiral dynamics. Phys. Rev. D 84, 074014 (2011)CrossRefADSGoogle Scholar
  15. 15.
    Pire B., Szymanowski L.: QCD analysis of anti-p Nγ*π in the scaling limit. Phys. Lett. B 622, 83 (2005)CrossRefADSGoogle Scholar
  16. 16.
    Chernyak V.L., Ogloblin A.A., Zhitnitsky I.R.: Calculation of exclusive processes with baryons. Z. Phys. C 42, 583 (1989)CrossRefGoogle Scholar
  17. 17.
    King I.D., Sachrajda C.T.: Nucleon wave functions and QCD sum rules. Nucl. Phys. B 279, 785 (1987)CrossRefADSGoogle Scholar
  18. 18.
    Braun V.M., Lenz A., Wittmann M.: Nucleon form factors in QCD. Phys. Rev. D 73, 094019 (2006)CrossRefADSGoogle Scholar
  19. 19.
    Lenz A., Gockeler M., Kaltenbrunner T., Warkentin N.: The nucleon distribution amplitudes and their application to nucleon form factors and the N → Δ transition at intermediate values of Q 2. Phys. Rev. D 79, 093007 (2009)CrossRefADSGoogle Scholar
  20. 20.
    Lin Q.-Y., Xu H.-S., Liu X.: Revisiting the production of charmonium plus a light meson at PANDA. Phys. Rev. D 86, 034007 (2012)CrossRefADSGoogle Scholar
  21. 21.
    Mueller D., Pire B., Szymanowski L., Wagner J.: On timelike and spacelike hard exclusive reactions. Phys. Rev. D 86, 031502 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • B. Pire
    • 1
  • K. Semenov-Tian-Shansky
    • 2
    Email author
  • L. Szymanowski
    • 3
  1. 1.CPhT, École Polytechnique, CNRSPalaiseauFrance
  2. 2.IFPA, Département AGOUniversité de LiègeLiègeBelgium
  3. 3.National Centre for Nuclear Research (NCBJ)WarsawPoland

Personalised recommendations