Few-Body Systems

, Volume 55, Issue 2, pp 121–133 | Cite as

Tests of a Deformable Core Plus Few-Nucleon Model

  • W. Horiuchi
  • Y. Suzuki


We formulate a core plus few-nucleon model allowing for a rotational excitation of the core. Three and four-body systems including a 12C core nucleus are studied using an explicitly correlated Gaussian basis. Effects of the core excitation are tested by investigating energy levels and electric quadrupole transition probabilities. Though some improvements are obtained, we realize that the Pauli principle for the nucleon-deformable core motion has to be appropriately defined for better understanding.


Halo Nucleus Valence Nucleon Core Nucleus Core Excitation Hoyle State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arai K., Suzuki Y., Lovas R.G.: Structure of 6He with an extended three-cluster model. Phys. Rev. C 59, 1432 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    Varga K., Suzuki Y., Lovas R.G.: Microscopic multicluster model of 9,10,11Li. Phys. Rev. C 66, 041302 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Myo T., Kato K., Toki H., Ikeda K.: Roles of tensor and pairing correlations on halo formation in 11Li. Phys. Rev. C 76, 024305 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Nakamura T. et al.: Halo structure of the Island of inversion nucleus 31Ne. Phys. Rev. Lett. 103, 262501 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Takechi M. et al.: Interaction cross sections for Ne isotopes towards the island of inversion and halo structures of 29Ne and 31Ne. Phys. Lett. B 707, 357 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Horiuchi W., Suzuki Y., Capel P., Baye D.: Probing the weakly-bound neutron orbit of 31Ne with total reaction and one-neutron removal cross sections. Phys. Rev. C 81, 024606 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Urata Y., Hagino K., Sagawa H.: Ground state properties and Coulomb dissociation of the deformed-halo nucleus 31Ne. Phys. Rev. C 83, 041303(R) (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Minomo K., Sumi T., Kimura M., Ogata K., Shimizu Y.R., Yahiro M.: Determination of the structure of 31Ne by a fully microscopic framework. Phys. Rev. Lett. 108, 052503 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Nunes F.M., Christley J.A., Thompson I.J., Johnson R.C., Efros V.D.: Core excitation in three-body systems: application to 12Be. Nucl. Phys. A 609, 43 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    Moro A.M., Lay J.A.: Interplay between valence and core excitation mechanisms in the breakup of halo nuclei. Phys. Rev. Lett. 109, 232502 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Moro A.M., Crespo R.: Core excitation effects in the breakup of the one-neutron halo nucleus 11Be on a proton target. Phys. Rev. C 85, 054613 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Deltuva A.: Faddeev-type calculation of three-body nuclear reactions including core excitation. Phys. Rev. C 88, 011601(R) (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Sagawa H., Zhou X.R., Zhang R.Z., Suzuki T.: Deformations and electromagnetic moments in carbon and neon isotopes. Phys. Rev. C 70, 054316 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Kanada-En’yo Y.: Deformation of C isotopes. Phys. Rev. C 71, 014310 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Masui H., Itagaki N.: Simplified modeling of cluster-shell competition in carbon isotopes. Phys. Rev. C 75, 054309 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Yoshida T., Itagaki N., Otsuka T.: Appearance of cluster states in 13C. Phys. Rev. C 79, 034308 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Suzuki Y.: Structure Study of T = 0 States in 16O by 12C + α cluster-coupling model. I. Prog. Theor. Phys. 55, 1751 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    Suzuki Y.: Structure study of T = 0 states in 16O by 12C + α cluster-coupling model. II. Prog. Theor. Phys. 56, 111 (1976)ADSCrossRefGoogle Scholar
  19. 19.
    Mikoshiba O., Terasawa T., Tanifuji M.: Scattering of nucleons by 12C and the structures of 13N and 13C. Nucl. Phys. A 168, 417 (1971)ADSCrossRefGoogle Scholar
  20. 20.
    Amos K., Canton L., Pisent G., Svenne J.P., van der Knijff D.: An algebraic solution of the multichannel problem applied to low energy nucleon-nucleus scattering. Nucl. Phys. A 728, 65 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Canton L. et al.: Role of the Pauli principle in collective-model coupled channel calculations. Phys. Rev. Lett. 94, 122503 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Pisant G. et al.: Compound and quasicompound states in low-energy scattering of nucleons from 12C. Phys. Rev. C 72, 014601 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Svenne J.P. et al.: Low-energy neutron-12C analyzing powers: results from a multichannel algebraic scattering theory. Phys. Rev. C 73, 027601 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Kukulin V.I., Pomerantsev V.N.: The orthogonal projection method in scattering theory. Ann. Phys. 111, 330 (1978)ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    Suzuki Y., Ikeda K.: Cluster-orbital shell model and its application to the He isotopes. Phys. Rev. C 410, 410 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    Horiuchi W., Suzuki Y.: Momentum distribution and correlation of two-nucleon relative motion in 6He and 6Li. Phys. Rev. C 76, 024311 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Kamimura M.: Nonadiabatic coupled-rearrangement-channel approach to muonic molecules. Phys. Rev. A 38, 621 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    Varga K., Suzuki Y.: Precise solution of few-body problems with the stochastic variational method on a correlated Gaussian basis. Phys. Rev. C 52, 2885 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    Suzuki Y., Varga K.: Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems (Lecture Notes in Physics, vol. 54). Springer, Berlin (1998)Google Scholar
  30. 30.
    Suzuki Y., Horiuchi W., Orabi M., Arai K.: Global-vector representation of the angular motion of few-particle systems II. Few-Body Syst. 42, 33 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Aoyama S., Arai K., Suzuki Y., Descouvemont P., Baye D.: Four-nucleon scattering with a correlated Gaussian Basis method. Few-Body Syst. 52, 97 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Horiuchi W., Suzuki Y.: Inversion doublets of 3N + N cluster structure in excited states of 4He. Phys. Rev. C 78, 034305 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Arai K., Aoyama S., Suzuki Y., Descouvemont P., Baye D.: Tensor force manifestations in ab initio study of the 2H(d, γ)4He, 2H(d, p)3H, and 3H(d, n)3He reactions. Phys. Rev. Lett. 107, 132502 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Horiuchi W., Suzuki Y., Arai K.: Ab initio study of the photoabsorption of 4He. Phys. Rev. C 85, 054002 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Horiuchi W., Suzuki Y.: Excited states and response functions of 4He in correlated Gaussians. Few-Body Syst. 54, 2407 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Horiuchi W., Suzuki Y.: Spin-dipole strength functions of 4He with realistic nuclear forces. Phys. Rev. C 87, 034001 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    Mitroy J. et al.: Theory and application of explicitly correlated Gaussians. Rev. Mod. Phys. 85, 693 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Varga K., Suzuki Y., Lovas R.G.: Microscopic multicluster description of neutron-halo nuclei with a stochastic variational method. Nucl. Phys. A 571, 447 (1994)ADSCrossRefGoogle Scholar
  39. 39.
    Horiuchi W., Suzuki Y.: Structure of and E2 transition in 16C in a 14C + n + n model. Phys. Rev. C 73, 037304 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    Horiuchi W., Suzuki Y.: 22C: an s-wave two-neutron halo nucleus. Phys. Rev. C 74, 034311 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    Suzuki Y., Takahashi M.: α cluster condensation in 12C and 16O?. Phys. Rev. C 65, 064318 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    Timofeyuk N.K., Baye D., Descouvemont P.: Microscopic shell-model and cluster-model calculations of the 13C →12 C + n and 8B→7 Be + p vertex constants. Nucl. Phys. A 620, 29 (1997)ADSCrossRefGoogle Scholar
  43. 43.
    Bohr A., Mottelson B.R.: Nuclear Structure vol. I: Single-Particle Motion. Benjamin, New York (1969)Google Scholar
  44. 44.
    Ajzenberg-Selove F.: Energy levels of light nuclei A = 13 − 15. Nucl. Phys. A 523, 1 (1991)ADSCrossRefGoogle Scholar
  45. 45.
    Thompson D.R., Lemere M., Tang Y.C.: Systematic investigation of scattering problems with the resonating-group method. Nucl. Phys. A 286, 53 (1977)ADSCrossRefGoogle Scholar
  46. 46.
    Suzuki Y., Usukura J.: Excited states of the positronium molecule. Nucl. Inst. Method B 171, 67 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    Ajzenberg-Selove F.: Energy levels of light nuclei A = 11 − 12. Nucl. Phys. A 433, 1 (1984)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Department of PhysicsHokkaido UniversitySapporoJapan
  2. 2.Department of PhysicsNiigata UniversityNiigataJapan
  3. 3.RIKEN Nishina CenterRIKENWakoJapan

Personalised recommendations