Advertisement

Few-Body Systems

, Volume 55, Issue 8–10, pp 713–716 | Cite as

A Method for Unambiguous Detection of a Hypothetical Bound Two-Neutron System

  • Kazimierz Bodek
Open Access
Article
  • 271 Downloads

Abstract

An experiment is proposed aiming at the unambiguous detection of mass A = 2 neutral particles via elastic scattering and neutron exchange reactions on protons in a plastic scintillating fibre detector. Di-neutrons would be produced in ordinary π absorption at rest on 3He together with tagging protons. The basic advantages of the proposed process are the strict collinearity and opposite, and constant momenta of hypothetical di-neutrons and recoiling particles in the LAB reference frame. Moreover, the detection cross sections (2 npp2 n; 2 npdn) are calculable with three-nucleon codes based on 1 a nn dependent nn interactions.

Keywords

Elastic Scattering Production Cross Section Unambiguous Detection Liquid Organic Scintillator Neutron Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Spyrou A. et al.: First observation of ground state dineutron decay: 16Be. Phys. Rev. Lett. 108, 102501 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Watson K.M.: The effect of final state interactions on reaction cross sections. Phys. Rev. 88, 1163 (1952)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Migdal A.B.: The theory of nuclear reactions with production of slow particles. JETP (Sov. Phys.) 1, 2 (1955)zbMATHGoogle Scholar
  4. 4.
    Witała H., Glöckle W.: Dineutron and the three-nucleon continuum observables. Phys. Rev. C 85, 064003 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Marques F.M. et al.: Comment on “First observation of ground state dineutron decay: 16Be”. Phys. Rev. Lett. 109, 239201 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Bodek K. et al.: Neutron-neutron scattering length in the reaction 9Be (n, nn)8Be at 10.3 MeV. Few-Body Syst. 8, 23–35 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    Timofeyuk N.K.: Do multineutrons exist?. J. Phys. G Nucl. Part Phys. 29, L9–L14 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Yamazaki T. et al.: Helium nuclei, deuteron, and dineutron in 2 + 1 flavor lattice QCD. Phys. Rev. D 86, 074514 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Kneller J.P., McLaughlin G.C.: Effect of bound dineutrons upon big bang nucleosynthesis. Phys. Rev. D 70, 043512 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Flambaum V.V., Wiringa R.B.: Dependence of nuclear binding on hadronic mass variation. Phys. Rev. C 76, 054002 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Beane S.R. et al.: Nucleon-Nucleon scattering from fully dynamical lattice QCD. Phys. Rev. Lett. 97, 012001 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Gorringe T.P. et al.: Search for the tetraneutron using the reaction 4He(π , π +)4 n. Phys. Rev. C 40, 2390 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    Marques F.M. et al.: Detection of neutron clusters. Phys. Rev. C 65, 044006 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Sherrill B.M., Bertulani C.A.: Proton-tetraneutron elastic scattering. Phys. Rev. C 6, 027601 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Gotta D. et al.: Negative pion absorption at rest in 3He. Phys. Rev. C 51, 469 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    Witała, H.: Private communicationGoogle Scholar

Copyright information

© The Author(s) 2013

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  1. 1.M. Smoluchowski Institute of PhysicsJagiellonian UniversityCracowPoland

Personalised recommendations