Few-Body Systems

, Volume 55, Issue 8–10, pp 701–704 | Cite as

Singularity-Free Two-Body Equation with Confining Interactions in Momentum Space

  • Alfred StadlerEmail author
  • Sofia Leitão
  • M. T. Peña
  • Elmar P. Biernat


We are developing a covariant model for all mesons that can be described as quark-antiquark bound states in the framework of the Covariant Spectator Theory (CST) in Minkowski space. The kernel of the bound-state equation contains a relativistic generalization of a linear confining potential which is singular in momentum space and makes its numerical solution more difficult. The same type of singularity is present in the momentum-space Schrödinger equation, which is obtained in the nonrelativistic limit. We present an alternative, singularity-free form of the momentum-space Schrödinger equation which is much easier to solve numerically and which yields accurate and stable results. The same method will be applied to the numerical solution of the CST bound-state equations.


Momentum Space Partial Wave Nonrelativistic Limit Subtraction Term Transition Form Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stadler A., Gross F.: Covariant spectator theory: foundations and applications. Few-Body Syst. 49, 91–110 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Gross F., Milana J.: Covariant, chirally symmetric, confining model of mesons. Phys. Rev. D 43, 2401 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    Gross F., Milana J.: Decoupling confinement and chiral-symmetry breaking: an explicit model. Phys. Rev. D 45, 969 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    Gross F., Milana J.: Goldstone pion and other mesons using a scalar confining interaction. Phys. Rev. D 50, 3332 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    Savkli C., Gross F.: Quark-antiquark bound states in the relativistic spectator formalism. Phys. Rev. C 63, 035208 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Biernat, E.P., Gross, F., Peña, M.T., Stadler, A.: Confinement, quark mass functions, and spontaneous chiral symmetry breaking in Minkowski space. arXiv:1310.7545Google Scholar
  7. 7.
    Spence J.R., Vary J.P.: Solving momentum-space integral equations for quarkonia spectra with confining potentials. ii. Phys. Rev. D 35, 2191–2193 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    Maung K.M., Kahana D.E., Norbury J.W.: Solution of two-body relativistic bound-state equations with confining plus Coulomb interactions. Phys. Rev. D 47, 1182–1189 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Alfred Stadler
    • 1
    • 2
    Email author
  • Sofia Leitão
    • 3
  • M. T. Peña
    • 3
  • Elmar P. Biernat
    • 3
  1. 1.Departamento de Física da Universidade de ÉvoraÉvoraPortugal
  2. 2.Centro de Física Nuclear da Universidade de LisboaLisboaPortugal
  3. 3.Departamento de Física, CFTPInstituto Superior TécnicoLisboaPortugal

Personalised recommendations