Few-Body Systems

, Volume 55, Issue 1, pp 61–67 | Cite as

Approximate Solutions of the Schrödinger Equation with the Hyperbolical Potential: Supersymmetric Approach

  • C. A. OnateEmail author
  • K. J. Oyewumi
  • B. J. Falaye


The bound state solution of the Schrödinger equation with the hyperbolical potential is obtained by using supersymmetric approach. By applying proper approximation scheme to deal with the centrifugal barrier, we obtain the energy eigenvalues and the corresponding wave functions are obtained in terms of generalized hypergeometric functions. Comparison of our computed numerical results with the ones obtained by findings of other methods reveals that supersymmetric approach is reliable, efficient and accurate.


Morse Potential Local Truncation Error Pseudospin Symmetry Centrifugal Barrier Asymptotic Iteration Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hassansbsdi H., Maghsoodi E., Zarrinkamar S., Rahimov H.: An approximate solution of the dirac equation for hyperbolic scalar and vector potentials and a coulomb tensor interaction by SUSYQM. Mod. Phys. Lett. A 26, 2703 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Jia C.S., Zeng X.L., Sun L.T.: PT symmetry and shape invariance for a potential well with a barrier. Phys. Lett. A 294, 185 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Jia C.S., Diao Y.F., Min L., Yang Q.B., Sun L.Y., Huang R.Y.: Mapping of the five-parameter exponential-type potential model into trigonometric-type potentials. J. Phys. A: Math. Gen. 37, 11275 (2004)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Egrifes H., Demirhan D., Buyukkilic F.: Exact solutions of the Schrödinger equation for the deformed hyperbolic potential well and the deformed four-parameter exponential type potential. Phys. Lett. A 275, 229 (2000)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Jia C.S., Li Y., Sun Y., Liu J.Y., Sun L.T.: Bound states of the five-parameter exponential-type potential model. Phys. Lett. A 311, 115 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Jia C.S., Guo P., Peng X.L.: Exact solution of the Dirac–Eckart problem with spin and pseudospin symmetry. J. Phys. A: Math. Gen. 39, 7737 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Falaye B.J.: Any ℓ-state solutions of the Eckart potential via asymptotic iteration method. Cent. Eur. J. Phys. 10, 960 (2012)CrossRefGoogle Scholar
  8. 8.
    Bayrak O., Kocak G., Boztosun I.: Any l-state solutions of the Hulthén potential by the asymptotic iteration method. J. Phys. A: Math. Gen. 39, 11521 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Gonul B., Zer O., Cancelik Y., Kocak M.: Hamiltonian hierarchy and the Hulthén potential. Phys. Lett. A 275, 238 (2000)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chetouani L., Guechi L., Lecheheb A., Hamamann T.F., Messonber A.: Path integral for Klein–Gordon particle in vector plus scalar Hulthén-type potentials. Physica A 234, 529 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    Oyewumi K.J., Akinpelu F.O., Agboola A.D.: Exactly complete solutions of the pseudoharmonic potential in N-dimensions. Int. J. Theor. Phys. 47, 1039 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Aydogdu O., Sever R.: Exact pseudospin symmetric solution of the Dirac equation for pseudoharmonic potential in the presence of tensor potential. Few Body Syst. 47, 193 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Dong S.H., Sun G.H.: The series solutions of the non-relativistic equation with the Morse potential. Phys. Lett. A 314, 261 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Filho E.D., Riccota R.M.: Supersymmetric variational energies for the confined Coulomb system. Phys. Lett. A 269, 269 (2000)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Berkdemir C.: Pseudospin symmetry in the relativistic Morse potential including the spin–orbit coupling term. Nucl. Phys. A 770, 32 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Qiang W.C., Zhou R.S., Gao Y.: Application of the exact quantization rule to the relativistic solution of the rotational Morse potential with pseudospin symmetry. J. Phys. A: Math. Theor. 40, 1677 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Bayrak O, Boztosun I: The pseudospin symmetric solution of the Morse potential for any κ state. J. Phys. A: Math. Theor. 40, 11119 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Oyewumi K.J., Oluwadare O.J., Sen K.D., Babalola O.A.: Bound state solutions of the Deng–Fan molecular potential with the Pekeris-type approximation using the Nikiforov–Uvarov (N–U) method. J. Math. Chem. 51, 976 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Hamzavi M., Ikhdair S.M., Thylwe K.E.: Equivalence of the empirical shifted Deng–Fan oscillator potential for diatomic molecules. J. Math. Chem. 51, 227 (2012)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Qiang W.C., Dong S.H.: Analytical approximations to the l-wave solutions of the Klein-Gordon equation for a second Pöschl–Teller like potential. Phys. Lett. A 372, 4789 (2008)ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    Dong S.H., Gonzales-Cisneros A.: Energy spectra of the hyperbolic and second Pöschl-teller like potentials solved by new exact quantization rule. Ann. Phys. 323, 1136 (2008)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Falaye B.J., Oyewumi K.J., Ibrahim T.T., Punyasena M.A., Onate C.A.: Bound state solutions of the Manning–Rosen potential. Can. J. Phys. 91, 98 (2013)CrossRefGoogle Scholar
  23. 23.
    Oyewumi K.J., Akoshile C.O.: Bound-state solutions of the Dirac-Rosen-Morse potential with spin and pseudospin symmetry. Eur. Phys. J. A 45, 311 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Oyewumi, K.J.: Approximate Solutions of the Dirac Equation for the Rosen Morse Potential in the Presence of the Spin–Orbit and Pseudo-Orbit Centrifugal Terms. In: Pahlavani, M.R. (ed.) Theoretical Concept of Quantum Mechanics, Chapter 19, pp. 445–69, InTech, Croatia (2012)Google Scholar
  25. 25.
    Qiang W.C., Dong S.H.: Arbitrary l-state solutions of the rotating Morse potential through the exact quantization rule method. Phys. Lett. A 363, 169 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Pekeris C.L.: The Rotation-Vibration Coupling in Diatomic Molecules. Phys. Rev. 45, 98 (1934)ADSCrossRefGoogle Scholar
  27. 27.
    Berkdemir C., Han J.: Any l-state solutions of the Morse potential through the Pekeris approximation and Nikiforov–Uvarov method. Chem. Phys. Lett. 409, 203 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Falaye B.J.: Arbitrary ℓ-State Solutions of the Hyperbolical Potential by the Asymptotic Iteration Method. Few Body Syst. 53, 557 (2012)ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    Lucha W., Shöberl F.F.: Solving the Schrödinger equation for bound states with mathematical 3.0. Int. J. Mod. Phys. C 10, 607 (1999)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Ikhdair S.M., Sever R.: Improved analytical approximation to arbitrary l-state solutions of the Schröger equation for the hyperbolical potential. Ann. Phys. (Berlin) 18, 189 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Hassanabadi H., Maghsoodi E., Zarrinkamar S.: Relativistic symmetries of Dirac equation and the Tietz potential. Eur. Phys. J. Plus 127, 31 (2012)CrossRefGoogle Scholar
  32. 32.
    Cooper F. et al.: Supersymmetry and quantum mechanics. Phys. Rep 251, 267 (1995)ADSCrossRefMathSciNetGoogle Scholar
  33. 33.
    Junker G.: Supersymmetric Methods in Quantum and Statistical Physics. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Theoretical Physics, Section, Department of PhysicsUniversity of IlorinIlorinNigeria

Personalised recommendations