Few-Body Systems

, Volume 55, Issue 1, pp 35–45 | Cite as

Estimates for Parameters and Characteristics of the Confining SU(3)-gluonic Field in ϕ-meson from Leptonic Widths

Article

Abstract

The paper is devoted to applying the confinement mechanism proposed earlier by one of the authors to estimate the possible parameters of the confining SU(3)-gluonic field in vector ϕ-meson. The estimates obtained are consistent with the leptonic widths of the given meson. The corresponding estimates of the gluon concentrations, electric and magnetic colour field strengths are also adduced for the mentioned field at the scales of the meson under consideration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown G.E., Jackson A.D.: The Nucleon-Nucleon Interaction. North-Holland Publishing Company, New York (1976)Google Scholar
  2. 2.
    Soloviev V.G.: Theory of Atomic Nucleous: Nuclear Models. Energoizdat, Moscow (1981)Google Scholar
  3. 3.
    Goncharov Yu.P.: Black hole physics, confining solutions of SU(3)-Yang-Mills equations and relativistic models of mesons. Mod. Phys. Lett. A 16, 557 (2001)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Goncharov Yu.P.: Structure of the confining solutions for SU(3)-Yang-Mills equations and confinement mechanism. Phys. Lett. B 617, 67 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Goncharov, Yu.P.: Intersection of black hole theory and quantum chromodynamics: the gluon propagator corresponding to linear confinement at large distances and relativistic bound states in the confining SU(N)-Yang-Mills fields. In: Kreitler, P.V. (ed.): New Developments in Black Hole Research, Chap. 3, pp. 67–121. Nova Science Publishers, New York, hep-th/0512099 (2006)Google Scholar
  6. 6.
    Wilson K.: Confinement of quarks. Phys. Rev. D 10, 2445 (1974)ADSCrossRefGoogle Scholar
  7. 7.
    Bander M.: Theories of quark confinement. Phys. Rep. 75, 205 (1981)ADSCrossRefGoogle Scholar
  8. 8.
    Sánchez-Monroy J.A., Quimbay C.J.: Exact solutions of (n+l)-dimensional Yang-Mills equations in curved space-time. Ann. Phys. 327, 2166 (2012)ADSCrossRefMATHGoogle Scholar
  9. 9.
    Perkins D.H.: Introduction to High Energy Physics. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  10. 10.
    Goncharov Yu.P.: Dirac equation in the confining SU(3)-Yang-Mills field and relativistic effects in the charmonium spectrum. Europhys. Lett. 62, 684 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Goncharov Yu.P., Choban E.A.: Dirac equation in the confining SU(3)-Yang-Mills field and the relativistic effects in quarkonia spectra. Mod. Phys. Lett. A 18, 1661 (2003)ADSCrossRefMATHGoogle Scholar
  12. 12.
    Goncharov Yu.P., Bytsenko A.A.: Estimates of the gluon concentrations in the confining SU(3)-Yang-Mills field for the first three states of charmonium. Phys. Lett. B 602, 86 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Goncharov Yu.P.: Estimates for parameters and characteristics of the confining SU(3)-gluonic field in the ground state of toponium: relativistic and nonrelativistic approaches. Nucl. Phys. A 808, 73 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Goncharov Yu.P.: Estimates for parameters and characteristics of the confining SU(3)-gluonic field in pions and kaons. Phys. Lett. B 641, 237 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Goncharov Yu.P.: Estimates for parameters and characteristics of the confining SU(3)-gluonic field in π 0-meson from one- and two-photon decays. Phys. Lett. B 652, 310 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Goncharov Yu.P.: Estimates for parameters and characteristics of the confining SU(3)-gluonic field in η-meson from two-photon decay. Mod. Phys. Lett. A 22, 2273 (2007)ADSCrossRefMATHGoogle Scholar
  17. 17.
    Goncharov Yu.P.: Estimates for parameters and characteristics of the confining SU(3)-gluonic field in an η′-meson. J. Phys. G: Nucl. Part. Phys. 35, 095006 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Goncharov Yu.P.: Estimates for parameters and characteristics of the confining SU(3)-gluonic field in charged pions and kaons from leptonic decays and chiral symmetry breaking. Nucl. Phys. A 812, 99 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Goncharov Yu.P.: Estimates for parameters and characteristics of the confining SU(3)-gluonic field in neutral kaons and chiral limit for pseudoscalar nonet. Eur. Phys. J. A 46, 139 (2010)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    Goncharov Yu.P.: Quark confinement mechanism and the scale ΛQCD. Int. J. Theor. Phys. 51, 428 (2012)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Goncharov Yu.P., Firsova N.E.: Classical model of confinement. Int. J. Theor. Phys. 49, 1155 (2010)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Nakamura, K., et al.: Particle data group. J. Phys. G: Nucl. Part. Phys. 37, 1 (2010)Google Scholar
  23. 23.
    Deur A.: Measurement of the Q 2-evolution of the Bjorken integral and extraction of an effective strong coupling constant at low Q 2. Nucl. Phys. A 755, 353 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Deur A. et al.: Determination of an effective α s from the Bjorken sum rule. Phys. Lett. B 650, 244 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Savel’ev, I.V.: Course of Physics, vol. 1. Nauka, Moscow (1989)Google Scholar
  26. 26.
    Berestezkiy V.B., Lifshits E.M., Pitaevskiy L.P.: Quantum Electrodynamics. Fizmatlit, Moscow (2002)Google Scholar
  27. 27.
    Levich, V.G., Vdovin, Y.A., Myamlin, V.A.: Course of Theoretical Physics, vol. 2. Nauka, Moscow (1971)Google Scholar
  28. 28.
    Lutz M.F.M., Leupold S.: On the radiative decays of light vector and axial-vector mesons. Nucl. Phys. A 813, 96 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Giacosa F., Pagliara G.: Decay of light scalar mesons into vector-photon and into pseudoscalar mesons. Nucl. Phys. A 833, 138 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Aoki S. et al.: Lattice QCD calculation of the ρ meson decay width. Phys. Rev. D 76, 094506 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Landau, L.D., Lifshits, E.M.: Field Theory. Nauka, Moscow (1988)Google Scholar
  32. 32.
    Landau, L.D., Lifshits, E.M.: Quantum Mechanics. Nonrelativistic Theory. Nauka, Moscow (1989)Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Theoretical Group, Experimental Physics DepartmentState Polytechnical UniversitySankt-PetersburgRussia

Personalised recommendations